Skip to main content
Log in

Suspension Plasma-Sprayed Alumina Coating Structures: Operating Parameters Versus Coating Architecture

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Suspension plasma spraying (SPS) is able to process sub-micrometric-sized feedstock particles and permits the deposition of layers thinner (from 5 to 50 μm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists in mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 μm, average values. Upon penetration within the DC plasma jet, two phenomena occur sequentially: droplet fragmentation and evaporation. Particles are then processed by the plasma flow prior their impact, spreading and solidification upon the surface to be covered. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers. Nevertheless, the coupling between the parameters controlling the coating microstructure and properties are not yet fully identified. The aim of this study is to further understand the influence of parameters controlling the manufacturing mechanisms of SPS alumina coatings, particularly the spray beads influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Siegert, J.E. Döring, J.L. Marqués, R. Vaβen, D. Sebold, and D. Stöver, Denser Ceramic Coatings Obtained by the Optimization of the Suspension Plasma Spraying Technique, Thermal Spray Solutions – Advances in Technology and Application, DVS-Verlag GmbH, Düsseldorf, Germany, 2005, ISBN: 3-87155-792-7

  2. R. Rampon, C. Filiatre, G. Bertrand (2008) Suspension plasma spraying of YPSZ coatings for SOFC: suspension atomization and injection. J. Therm. Spray Technol. 17(1):105–114

    Article  ADS  CAS  Google Scholar 

  3. J. Jaworski, L. Pawlowski, F. Rondet, S. Kozerski, A.L. Magner (2008) Influence of suspension plasma spraying process parameter on TiO2 coatings microstructure. J. Therm. Spray Technol., 17(1):73–81

    Article  ADS  CAS  Google Scholar 

  4. S. Bouaricha, J. Oberste-Berghaus, J.G. Legoux, C. Moreau, and T. Chraska, Suspension Plasma Spraying of Nano-Ceramics Using an Axial Injection Torch, Thermal Spray Connects: Explore its Surfacing Potential!, E. Lugscheider, Ed., DVS-Verlag GmbH, Düsseldorf, Germany, 2005, ISBN: 3-87155-793-5

  5. R. Etchart-Salas, “Atmospheric Plasma Spraying of Submicron-Sized Solid Particles in Suspension. Experimental and Analytical Approach of Involved Phenomena in Reproducibility and Quality of Coatings,” Ph.D. Thesis, University of Limoges, France, 2007 (in French)

  6. B.E. Gelfand (1996) Droplet breakup phenomena in flows with velocity lag. Prog. Energy Combust. Sci. 22:201–265

    Article  CAS  Google Scholar 

  7. T. Watunabe, K. Ebihara (2003) Numerical simulation of coalescence and breakup of rising droplets. Computer and Fluids, 32:823–834

    Article  Google Scholar 

  8. C.S. Lee, R.D. Reitz (2001) Effect of liquid properties on the breakup mechanism of high speed liquid drops. Atomization and Sprays 11:1–19

    Google Scholar 

  9. J. Fazilleau, C. Delbos, V. Rat, J.-F. Coudert, P. Fauchais, B. Pateyron (2006) Phenomena involved in suspension plasma spraying part 1: suspension injection and behavior. Plasma Chem. Plasma Proc., 26(4):371–391

    Article  CAS  Google Scholar 

  10. P. Fauchais, M. Fukumoto, A. Vardelle, M. Vardelle (2004) Knowledge concerning splat formation : An invited review. J. Therm. Spray Technol., 13(3):337–360

    Article  ADS  CAS  Google Scholar 

  11. M.P. Planche, J.F. Coudert, P. Fauchais (1998) Velocity measurements for arc jets produced by d.c. plasma spray torches. Plasma Chem. Plasma Proc., 18:263–283

    Article  CAS  Google Scholar 

  12. J. Oberste-Berghaus, J.-G. Legoux, and C. Moreau, Injection Conditions and In-Flight Particle States in Suspension Plasma Spraying of Aluminia and Zirconia Nano-Ceramics, Thermal Spray Connects: Explore its Surfacing Potential!, E. Lugscheider, Ed., DVS-Verlag GmbH, Düsseldorf, Germany, 2005, ISBN: 3-87155-793-5

  13. J.-F. Bisson, C. Moreau (2003) Effect of direct-current plasma fluctuations on in-flight particle parameters Part II. J. Thermal Spray Technol., 12:256–65

    ADS  Google Scholar 

  14. R. Etchart-Salas, V. Rat, J.-F. Coudert, and P. Fauchais, Thermal Spray 2007: Global Coating Solutions, B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Eds., CD-Rom, Pub. ASM International, Materials Park, OH, USA, 2007, ISBN: 0-87170-809-4

  15. P. Fauchais (2004) Understanding plasma spraying. J. Phys. D: Appl. Phys. 37:R86–R108

    Article  ADS  CAS  Google Scholar 

  16. C. Delbos, “Contribution to the Understanding of Ceramic (Y-PSZ, Perovskite, etc.) or Metallic (Ni, etc.) Particles Injection by a Liquid Carrier in a Plasma Jet to Manufacture Finely-Structured Coatings for SOFC,” Ph.D. Thesis, University of Limoges, 2004 (in French)

  17. O. Tingaud, A. Grimaud, A. Denoirjean, G. Montavon, V. Rat, J.-F. Coudert, and P. Fauchais, Effects of Operating Parameters on SPS Alumina Coatings Structures to Manufacture Functionally-Graded Layers, Surf. Coat. Technol. (in press)

  18. Y.P. Wan, J.R. Fincke, S. Sampath, V. Prasad, H. Herman (2002) Modeling and experimental observation of evaporation from oxidizing molybdenum particles entrained in a thermal plasma jet, 2002 Int. J. Heat Mass Transfer, 45:1007–1015

    Article  CAS  Google Scholar 

  19. I. Ahmed, T.L. Bergman (2000) Three-dimensional simulation of thermal plasma spraying of partially molten ceramic agglomerates. J. Thermal Spray Technol. 9:215–224

    Article  ADS  CAS  Google Scholar 

  20. XI Chen (1999) Heat and momentum transfer between a thermal plasma and suspended particles for different Knudsen numbers. Thin Solid Films, 345(1):140–145

    Article  ADS  CAS  Google Scholar 

  21. L. Xie, X. Ma, A. Ozturk, E.H. Jordan, N.P. Padture, B.M. Cetegen, D.T. Xiao, M. Gell (2004) Processing parameter effects on solution precursor plasma spray process spray patterns. Surf. Coat. Technol., 183(1):51–61

    Article  CAS  Google Scholar 

  22. F.-I. Trifa, G. Montavon, C. Coddet (2007) Model-based expert system for design and simulation of APS coatings. J. Therm. Spray Technol. 16(3):128–139

    Article  ADS  CAS  Google Scholar 

  23. E. Pfender (1999) Thermal plasma technology: where do we stand and where are we going?, Plasma Chem. Plasma Proc. 19:1–31

    Article  CAS  Google Scholar 

  24. F.-I. Trifa, G. Montavon, C. Coddet (2005) On the relationships between the geometric processing parameters of APS and the Al2O3-TiO2 deposit shapes. Surf. Coat. Technol., 195:54–69

    Article  CAS  Google Scholar 

  25. A. Haddadi, R. Hamacha, A. Grimaud, P. Fauchais, F. Nardou (1998) Residual stresses and microstructure of plasma sprayed zirconia coatings, High Temp. Mater. Processes 2(3):327–337

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Montavon.

Additional information

This article is an invited paper selected from presentations at the 2008 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Thermal Spray Crossing Borders, Proceedings of the 2008 International Thermal Spray Conference, Maastricht, The Netherlands, June 2-4, 2008, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tingaud, O., Grimaud, A., Denoirjean, A. et al. Suspension Plasma-Sprayed Alumina Coating Structures: Operating Parameters Versus Coating Architecture. J Therm Spray Tech 17, 662–670 (2008). https://doi.org/10.1007/s11666-008-9218-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-008-9218-9

Keywords

Navigation