Skip to main content
Log in

Numerical Modeling in Radio Frequency Suspension Plasma Spray of Zirconia Powders

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A comprehensive model was developed to investigate the suspension spraying for a radio frequency (RF) inductively coupled plasma torch. Firstly, the electromagnetic field is solved with the Maxwell equations and validated by the analytical solutions. Secondly, the plasma field with different power inputs is simulated by solving the governing equations of the fluid flow coupled with the RF heating. Then, the suspension droplets embedded with nano particles are modeled in a Lagrangian manner, considering feeding, collision, heating and evaporation of the suspension droplets, as well as tracking, acceleration, melting and evaporation of the nano or agglomerate particles. The non-continuum effects and the influence of the evaporation on the heat transfer are considered. This particle model predicts the trajectory, velocity, temperature and size of the in-flight nano- or agglomerate particles. The effects of operating conditions and intial inputs on the particle characteristics are investigated. The statistical distributions of multiple particles’ size, velocity, temperature are also discussed for the cases with and without consideration of suspension droplets collision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Magnetic vector potential (A H m−1)

B :

Magnetic flux density (T)

C p :

Specific heat (J kg−1 K−1)

C D :

Drag coefficient

D :

Diffusion coefficients (m2 s−1)

E :

Electric field (V m−1)

f :

Frequency (Hz)

F :

Lorentz force (N m−3)

H :

Magnetic field (A m−1)

h :

Heat transfer coefficient

J :

Current density (A m−2)

Kn :

Knudsen number

k :

Thermal conductivity (W m−1 K−1)

L m :

Latent heat of fusion (J kg−1)

L v :

Latent heat of evaporation (J kg−1)

m :

Mass

Nu :

Nusselt number

Pr :

Prandtl number, Pr = ν/α

Q J :

Joule heating (W m−3)

Q conv :

Convection heat (W m−3)

Q rad :

Radiation heat loss (W m−3)

Q vap :

Vaporization heat (W m−3)

R :

Radius (nm)

Sh :

Sherwood number

r :

Radial coordinate (m)

t :

Time (s)

T :

Particle temperature (K)

V, U, W:

Velocity vector (m s−1)

x :

Axial coordinate (m)

η :

Viscosity (kg s−1 m−1)

θ :

Azimuthal coordinate

θ inject :

Injection angle

μ 0 :

Permeability in vacuum, 4π × 10−7 (H m−1)

σ :

Electrical conductivity S (m−1)

ω:

Angular frequency rad (s−1)

c :

Cell

f :

Film surrounding particle surface

w :

Vicinity of the particle surface

l :

Liquid

g :

Gas

p :

Particle

so :

Solid

sl :

Solvent

v :

Vapor

References

  1. Bouyer E, Gitzhofer F, Boulos MI (1997) Suspension plasma spraying for hydroxyapatite powder preparation by RF plasma. IEEE Trans Plasma Sci 25:1066

    Article  ADS  Google Scholar 

  2. Bouyer E, Schiller G, Muller M, Henne RH (2001) Thermal plasma chemical vapor deposition of Si-based ceramic coatings from liquid precursors. Plasma Sources Sci Technol 21:523

    Google Scholar 

  3. Kumar R, Cheang P, Khor KA (2003) Radio frequency (RF) suspension plasma sprayed ultra-fine hydroxyapatite (HA)/zirconia composite powders. Biomaterials 24:2611

    Article  Google Scholar 

  4. Ravi BG, Ashutosh Gandhi S, Guo XZ, Margolies J, Sampath S (2008) Liquid precursor plasma spraying of functional materials: a case study for yttrium aluminum garnet (YAG). J Therm Spray Technol 17:82

    Article  ADS  Google Scholar 

  5. Fauchais P, Etchart-Salas R, Rat V, Coudert JF, Caron N, Wittmann-Teneze K (2008) Parameters controlling liquid plasma spraying: solutions, sols, or suspensions. J Therm Spray Technol 17:31

    Article  ADS  Google Scholar 

  6. Buchner P, Schubert H, Uhlenbusch J, Weiss M (2001) Evaporation of zirconia powders in thermal radio-frequency plasma. J Therm Spray Technol 10:666

    Article  ADS  Google Scholar 

  7. Buchner P, Ferfers H, Schubert H, Uhlenbusch J (1997) Evaporation of copper powders in an inductively coupled thermal rf plasma—numerical modelling and spectroscopic measurements. Plasma Sources Sci Technol 6:450

    Article  ADS  Google Scholar 

  8. Bhatia T, Ozturk A, Xie L, Jordan EH, Cetegen BM, Gell M, Ma X, Padture NP (2002) Mechanisms of ceramic coating deposition in solution-precursor plasma spray. J Mater Res 17(9):2363

    Article  ADS  Google Scholar 

  9. Tsunekawa Y, Hiromura M, Okumlya M (2000) Nitride formation in synthesis of Titanium Aluminide matrix composite coatings by reactive RF plasma spraying. J Therm Spray Technol 9(1):83

    Article  ADS  Google Scholar 

  10. Devi PS, Lee Y, Margolis J, Parise JB, Sampath S, Herman H, Hanson JC (2002) Comparison of citrate-nitrate gel combustion and precursor plasma spray processes for the synthesis of yttrium aluminum garnet. J Mater Res 17(11):2846

    Article  ADS  Google Scholar 

  11. Boulos MI (1992) RF induction plasma spraying: state-of-the-art review. J Therm Spray Tech 36(1):33

    Article  ADS  Google Scholar 

  12. Mostaghimi J, Proulx P, Boulos MI (1987) A two-temperature model of the inductively coupled rf plasma. J Appl Phys 61(5):1753

    Article  ADS  Google Scholar 

  13. Xue S, Proulx P, Boulos MI (2001) Extended-field electromagnetic model for inductively coupled plasma. J Phys Appl D 34:1897

    Article  ADS  Google Scholar 

  14. Mostaghimi J, Proulx P, Boulos MI (1984) Parametric study of the flow and temperature fields in an inductively coupled r.f. plasma torch. Plasma Chem Plasma Process 4(3):199

    Article  Google Scholar 

  15. Ye R, Proulx P, Boulos MI (1999) Turbulence phenomena in the radio frequency induction plasma torch. Int J Heat Mass Transfer 42:1585

    Article  MATH  Google Scholar 

  16. Selezneva SE, Boulus MI (2001) Supersonic induction plasma jet modeling. Nucl Instrum Methods Phys Res B 180:306

    Article  ADS  Google Scholar 

  17. Boulos MI, Gauvin WH (1974) Powder processing in a plasma jet, a proposed model. Can J Chem Eng 52:355

    Article  Google Scholar 

  18. Boulos MI (1978) Heating of powders in the fire ball of an induction plasma. IEEE Trans Plasma Sci 93

  19. Yoshida T, Akashi K (1977) Particle heating in a radio-frequency plasma torch. J Appl Phys 48:2252

    Article  ADS  Google Scholar 

  20. Proulx P, Mostaghimi J, Boulos MI (1985) Plasma-particle interaction effects in induction plasma modeling under dense loading conditions. Int J Heat Mass Trans 28:1327

    Article  Google Scholar 

  21. Tanaka Y, Sakuta T (2002) Chemically non-equilibrium modeling of N2 thermal ICP at atmospheric pressure using reaction kinetics. J Phys Appl D 35:468

    Article  ADS  Google Scholar 

  22. Shigeta M, Sato T, Nishiyama H (2004) Computational simulation of a particle-laden RF inductively coupled plasma with seeded potassium. Int J Heat Mass Transf 47:707

    Article  Google Scholar 

  23. Shigeta M, Watanabe T (2007) Multi-component co-condensation model of Ti-based boride/silicide nanoparticle growth in induction thermal plasmas. Thin Solid Film 515:4217

    Article  ADS  Google Scholar 

  24. Benson CM, Zhong JQ, Gimelshein SF, Levin DA (2003) Simulation of droplet heating and desolvation in inductively coupled plasma—part II: coalescence in the plasma. Spectrochim Acta Part B 58:1453

    Article  ADS  Google Scholar 

  25. Shan Y, Mostaghimi J (2005) Modelling of injection of dense liquid sprays in radio frequency inductively coupled plasmas. Plasma Chem Plasma Process 25:193

    Article  Google Scholar 

  26. Fazilleau J, Delbos C, Rat V, Coudert JF, Fauchais P, Pateyron B (2006) Phenomena involved in suspension plasma spraying Part 1 suspension injection and behavior. Plasma Chem Plasma Process 26:371

    Article  Google Scholar 

  27. Marchand C, Chazelas C, Mariaux G, Vardelle A (2007) Liquid precursor plasma spraying: modeling the interactions between the Transient Plasma Jet and the droplets. J Therm Spray Technol 16:5

    Article  Google Scholar 

  28. Xiong Hong-Bing, Lin Jian-Zhong (2009) Nanoparticles modeling in axially injection suspension plasma spray of zirconia and alumina ceramics. J Therm Spray Technol 8:887

    Article  ADS  Google Scholar 

  29. Xiong Hong-Bing, Zheng Li-Li, Streibl Tilo (2006) A critical assessment of particle temperature distributions during plasma spraying: numerical studies for YSZ. Plasma Chem Plasma Process 26:53

    Article  Google Scholar 

  30. Cai M, Haydar DA, Montaser A, Mostaghimi J (1997) Computer simulation of argon-nitrogen and argon-oxygen inductively coupled plasmas. Spectrochim Acta Part 52:369

    Article  ADS  Google Scholar 

  31. Wan YP, Prasad V, Wang G-X, Sampath S, Fincke JR (1999) Model and powder particle heating, melting, resolidification, and evaporation in plasma spraying processes. J Heat Transf 121:691

    Article  Google Scholar 

  32. Chen X, Pfender E (1983) Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma Process 3:97

    Article  Google Scholar 

  33. Ko GH, Ryou HS (2005) Droplet collision processes in an inter-spray impingement system. J Aerosol Sci 36:1300

    Article  Google Scholar 

  34. Patankar SV (1980) Numerical fluid flow and heat transfer. Hemisphere, New York

    MATH  Google Scholar 

  35. Davises J (1979) Induction heating handbook. McGraw Hill, London

    Google Scholar 

  36. O’Rourke PJ (1981) Collective drop effects on vaporizing liquid sprays. Ph.D. thesis, Mechanical and aerospace engineering. Princeton University, USA

Download references

Acknowledgments

This work was supported by a grant from the Major State Basic Research Development Program of China (973 Program) under contract No. 2011CB706501, the National Natural Science Foundation of China with Grant No. 11072216 and No. 11002136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, L., Lin, J. & Xiong, H. Numerical Modeling in Radio Frequency Suspension Plasma Spray of Zirconia Powders. Plasma Chem Plasma Process 30, 733–760 (2010). https://doi.org/10.1007/s11090-010-9247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-010-9247-2

Keywords

Navigation