Skip to main content
Log in

Microstructural and Mechanical Characterization of Selective Laser Melted 17-4 PH Stainless Steel: Effect of Laser Scan Strategy and Heat Treatment

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

17-4 PH stainless steel (SS) is a precipitation-hardening (PH) type of steel manufactured by selective laser melting (SLM) and known for high strength and corrosion resistance. The selection of process parameters plays an important role to reduce defects and improve mechanical properties. This study investigated the effect of hexagonal and chessboard scan strategies on relative density and residual stress of SLM-printed 17-4 PH SS samples. Relative density decreased as the scan strategy changed from hexagonal to chessboard due to insufficient melting, which causes pores in the samples and the residual stress was lower in the chessboard scan strategy due to lower thermal gradient. In this study, the hexagonal scan strategy was chosen based on higher relative density. The microstructure and mechanical properties of as-built and heat-treated (SA, SA + H900, SA + H1150) samples for optimized scan strategy were studied. The microstructure of 17-4 PH SS contains austenite and martensite. Austenite in as-built samples was retained due to nitrogen inert atmosphere, which acts as an austenite stabilizer and this can be further reduced by heat treatments, which is confirmed by EBSD and XRD. Precipitates were formed during aging heat treatments, which effects the mechanical properties. Mechanical properties depended on martensitic phase fraction and grain size. Grain size decreased from as-built to heat treatments. The increase in martensitic phase fraction and decrease in grain size resulted in high hardness and high strength. In this study, SA + H1150 samples were completely converted into martensite and showed higher mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Butt, Exploring the interrelationship between additive manufacturing and Industry 4.0, Designs, 2020, 4(2), p 13. https://doi.org/10.3390/DESIGNS4020013

    Article  Google Scholar 

  2. C.Y. Yap, C.K. Chua, Z.L. Dong et al., Review of Selective Laser Melting: Materials and Applications, Appl. Phys. Rev., 2015, 2, p 041101. https://doi.org/10.1063/1.4935926

    Article  CAS  Google Scholar 

  3. L. Zai, C. Zhang, Y. Wang et al., Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review, Metals, 2020, 10, p 255. https://doi.org/10.3390/MET10020255

    Article  Google Scholar 

  4. A.K. Singla, M. Banerjee, A. Sharma et al., Selective Laser Melting of Ti6Al4V Alloy: Process Parameters, Defects and Post-treatments, J. Manuf. Process., 2021, 64, p 161–187. https://doi.org/10.1016/J.JMAPRO.2021.01.009

    Article  Google Scholar 

  5. N. Limbasiya, A. Jain, H. Soni et al., A Comprehensive Review on the Effect of Process Parameters and Post-process Treatments on Microstructure and Mechanical Properties of Selective Laser Melting of AlSi10Mg, J. Market. Res., 2022, 21, p 1141–1176. https://doi.org/10.1016/J.JMRT.2022.09.092

    Article  CAS  Google Scholar 

  6. I. Koutiri, E. Pessard, P. Peyre et al., Influence of SLM Process Parameters on the Surface Finish, Porosity Rate and Fatigue Behavior of As-Built Inconel 625 Parts, J. Mater. Process. Technol., 2018, 255, p 536–546. https://doi.org/10.1016/J.JMATPROTEC.2017.12.043

    Article  CAS  Google Scholar 

  7. E. Liverani, S. Toschi, L. Ceschini, and A. Fortunato, Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel, J. Mater. Process. Technol., 2017, 249, p 255–263. https://doi.org/10.1016/J.JMATPROTEC.2017.05.042

    Article  CAS  Google Scholar 

  8. S. Bai, N. Perevoshchikova, Y. Sha, and X. Wu, The Effects of Selective Laser Melting Process Parameters on Relative Density of the AlSi10Mg Parts and Suitable Procedures of the Archimedes Method, Appl. Sci., 2019, 9, p 583. https://doi.org/10.3390/APP9030583

    Article  CAS  Google Scholar 

  9. A.K. Dutt, G.K. Bansal, S. Tripathy et al., Optimization of Selective Laser Melting (SLM) Additive Manufacturing Process Parameters of 316L Austenitic Stainless Steel, Trans Indian Inst Met, 2023, 76, p 335–345. https://doi.org/10.1007/s12666-022-02687-2

    Article  CAS  Google Scholar 

  10. M. Elsayed, M. Ghazy, Y. Youssef, and K. Essa, Optimization of SLM Process Parameters for Ti6Al4V Medical Implants, Rapid Prototyp J, 2019, 25, p 433–447. https://doi.org/10.1108/RPJ-05-2018-0112

    Article  Google Scholar 

  11. Z. Xiao, C. Chen, H. Zhu et al., Study of Residual Stress in Selective Laser Melting of Ti6Al4V, Mater. Des., 2020, 193, 108846. https://doi.org/10.1016/J.MATDES.2020.108846

    Article  CAS  Google Scholar 

  12. H. Jia, H. Sun, H. Wang et al., Scanning Strategy in Selective Laser Melting (SLM): A Review, Int. J. Adv. Manuf. Technol., 2021, 113, p 2413–2435. https://doi.org/10.1007/S00170-021-06810-3

    Article  Google Scholar 

  13. Hy. Chen, Dd. Gu, Q. Ge et al., Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, Int. J. Miner. Metall. Mater., 2021, 28, p 462–474. https://doi.org/10.1007/s12613-020-2133-x

    Article  CAS  Google Scholar 

  14. W. Abd-Elaziem, S. Elkatatny, A.E. Abd-Elaziem et al., On the Current Research Progress of Metallic Materials Fabricated by Laser Powder bed Fusion Process: A Review, J. Market. Res., 2022, 20, p 681–707. https://doi.org/10.1016/J.JMRT.2022.07.085

    Article  CAS  Google Scholar 

  15. S. Giganto, S. Martínez-Pellitero, J. Barreiro et al., Impact of the laser scanning strategy on the quality of 17-4PH stainless steel parts manufactured by selective laser melting, J. Market. Res., 2022, 20, p 2734–2747. https://doi.org/10.1016/J.JMRT.2022.08.040

    Article  CAS  Google Scholar 

  16. P. Bian, J. Shi, Y. Liu, and Y. Xie, Influence of Laser Power and Scanning Strategy on Residual Stress Distribution in Additively Manufactured 316L Steel, Opt. Laser Technol., 2020, 132, 106477. https://doi.org/10.1016/J.OPTLASTEC.2020.106477

    Article  CAS  Google Scholar 

  17. X. Miao, X. Liu, P. Lu et al., Influence of Scanning Strategy on the Performances of GO-Reinforced Ti6Al4V Nanocomposites Manufactured by SLM, Metals, 2020, 10, p 1379. https://doi.org/10.3390/MET10101379

    Article  CAS  Google Scholar 

  18. L. Mugwagwa, D. Dimitrov, S. Matope, and I. Yadroitsev, Evaluation of the Impact of Scanning Strategies on Residual Stresses in Selective Laser Melting, Int. J. Adv. Manuf. Technol., 2019, 102, p 2441–2450. https://doi.org/10.1007/s00170-019-03396-9

    Article  Google Scholar 

  19. Y. Lu, S. Wu, Y. Gan et al., Study on the Microstructure, Mechanical Property and Residual Stress of SLM Inconel-718 Alloy Manufactured by Differing Island Scanning Strategy, Opt Laser Technol, 2015, 75, p 197–206. https://doi.org/10.1016/j.optlastec.2015.07.009

    Article  CAS  Google Scholar 

  20. T. Bhardwaj and M. Shukla, Effect of Laser Scanning Strategies on Texture, Physical and Mechanical Properties of Laser Sintered Maraging Steel, Mater. Sci. Eng., A, 2018, 734, p 102–109. https://doi.org/10.1016/J.MSEA.2018.07.089

    Article  CAS  Google Scholar 

  21. M.K. Gupta, A.K. Singla, H. Ji et al., Impact of Layer Rotation on Micro-Structure, Grain Size, Surface Integrity and Mechanical Behaviour of SLM Al-Si-10Mg Alloy, J. Market. Res., 2020, 9, p 9506–9522. https://doi.org/10.1016/J.JMRT.2020.06.090

    Article  CAS  Google Scholar 

  22. Z. Wang, Z. Yang, F. Liu, and W. Zhang, Influence of the Scanning Angle on the Grain Growth and Mechanical Properties of Ni10Cr6W1Fe9Ti1 HEA Fabricated Using the LPBF–AM Method, Mater. Sci. Eng., A, 2023, 864, 144596. https://doi.org/10.1016/J.MSEA.2023.144596

    Article  CAS  Google Scholar 

  23. S. Pasebani, M. Ghayoor, S. Badwe et al., Effects of Atomizing Media and Post Processing on Mechanical Properties of 17-4 PH Stainless Steel Manufactured Via Selective Laser Melting, Addit. Manuf., 2018, 22, p 127–137. https://doi.org/10.1016/J.ADDMA.2018.05.011

    Article  CAS  Google Scholar 

  24. L.E. Murr, E. Martinez, J. Hernandez et al., Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting, J. Market. Res., 2012, 1, p 167–177. https://doi.org/10.1016/S2238-7854(12)70029-7

    Article  CAS  Google Scholar 

  25. H.K. Rafi, D. Pal, N. Patil et al., Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting, J. Mater. Eng. Perform., 2014, 23, p 4421–4428. https://doi.org/10.1007/S11665-014-1226-Y

    Article  CAS  Google Scholar 

  26. J.S. Weaver, J. Whiting, V. Tondare et al., The Effects of Particle Size Distribution on the Rheological Properties of the Powder and the Mechanical Properties of Additively Manufactured 17-4 PH Stainless Steel, Addit. Manuf., 2021, 39, 101851. https://doi.org/10.1016/J.ADDMA.2021.101851

    Article  CAS  Google Scholar 

  27. M.A. Aripin, Z. Sajuri, N.H. Jamadon et al., Effects of Build Orientations on Microstructure Evolution, Porosity Formation, and Mechanical Performance of Selective Laser Melted 17-4 PH Stainless Steel, Metals, 2022, 12, p 1968. https://doi.org/10.3390/MET12111968

    Article  CAS  Google Scholar 

  28. M. Mahmoudi, A. Elwany, A. Yadollahi et al., Mechanical Properties and Microstructural Characterization of Selective Laser Melted 17-4 PH Stainless Steel, Rapid Prototyp J, 2017, 23, p 280–294. https://doi.org/10.1108/RPJ-12-2015-0192

    Article  Google Scholar 

  29. C. Garcia-Cabezon, C.G. Hernández, M.A. Castro-Sastre et al., Heat Treatments of 17-4 PH SS Processed by SLM to Improve Its Strength and Biocompatibility in Biomedical Applications, J. Market. Res., 2023, 26, p 3524–3543. https://doi.org/10.1016/J.JMRT.2023.08.104

    Article  CAS  Google Scholar 

  30. S. Cheruvathur, E.A. Lass, and C.E. Campbell, Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure, JOM, 2016, 68, p 930–942. https://doi.org/10.1007/s11837-015-1754-4

    Article  CAS  Google Scholar 

  31. Y. Sun, R.J. Hebert, and M. Aindow, Effect of Heat Treatments on Microstructural Evolution of Additively Manufactured and Wrought 17-4PH Stainless Steel, Mater. Des., 2018, 156, p 429–440. https://doi.org/10.1016/j.matdes.2018.07.015

    Article  CAS  Google Scholar 

  32. A.D. Akessa, W.M. Tucho, H.G. Lemu, and J. Grønsund, Investigations of the Microstructure and Mechanical Properties of 17-4 PH ss Printed Using a MarkForged Metal X, Materials, 2022, 15, p 6898. https://doi.org/10.3390/MA15196898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D. Dong, J. Wang, C. Chen et al., Influence of Aging Treatment Regimes on Microstructure and Mechanical Properties of Selective Laser Melted 17-4 PH Steel, Micromachines (Basel), 2023, 14, p 871. https://doi.org/10.3390/mi14040871

    Article  PubMed  Google Scholar 

  34. K. Li, J. Zhan, T. Yang et al., Homogenization Timing Effect on Microstructure and Precipitation Strengthening of 17-4PH Stainless Steel Fabricated by Laser Powder Bed Fusion, Addit. Manuf., 2022, 52, 102672. https://doi.org/10.1016/J.ADDMA.2022.102672

    Article  CAS  Google Scholar 

  35. H.R. Lashgari, E. Adabifiroozjaei, C. Kong et al., Heat Treatment Response of Additively Manufactured 17-4PH Stainless Steel, Mater Charact, 2023, 197, 112661. https://doi.org/10.1016/J.MATCHAR.2023.112661

    Article  CAS  Google Scholar 

  36. S. An, D.R. Eo, I. Sohn, and K. Choi, Homogenization on Solution Treatment and Its Effects on the Precipitation-Hardening of Selective Laser Melted 17-4PH Stainless Steel, J. Mater. Sci. Technol., 2023, 166, p 47–57. https://doi.org/10.1016/J.JMST.2023.04.055

    Article  CAS  Google Scholar 

  37. H. Eskandari, H.R. Lashgari, L. Ye et al., Microstructural Characterization and Mechanical Properties of Additively Manufactured 17-4PH Stainless Steel, Mater Today Commun, 2022, 30, 103075. https://doi.org/10.1016/J.MTCOMM.2021.103075

    Article  CAS  Google Scholar 

  38. T. LeBrun, T. Nakamoto, K. Horikawa, and H. Kobayashi, Effect of Retained Austenite on Subsequent Thermal Processing and Resultant Mechanical Properties of Selective Laser Melted 17-4 PH Stainless Steel, Mater. Des., 2015, 81, p 44–53. https://doi.org/10.1016/J.MATDES.2015.05.026

    Article  CAS  Google Scholar 

  39. C. Li, Y. Chen, X. Zhang et al., Effect of Heat Treatment on Microstructure and Mechanical Properties of 17-4PH Stainless Steel Manufactured by Laser-Powder Bed Fusion, J. Market. Res., 2023, 26, p 5707–5715. https://doi.org/10.1016/J.JMRT.2023.08.283

    Article  CAS  Google Scholar 

  40. B. AlMangour and J.M. Yang, Improving the Surface Quality and Mechanical Properties by Shot-Peening of 17-4 Stainless Steel Fabricated by Additive Manufacturing, Mater. Des., 2016, 110, p 914–924. https://doi.org/10.1016/J.MATDES.2016.08.037

    Article  CAS  Google Scholar 

  41. B. AlMangour and J.-M. Yang, Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering, JOM, 2017, 69, p 2309–2313. https://doi.org/10.1007/s11837-017-2538-9

    Article  CAS  Google Scholar 

  42. M. Yakout, M.A. Elbestawi, and S.C. Veldhuis, A Study of Thermal Expansion Coefficients and Microstructure During Selective Laser Melting of Invar 36 and Stainless Steel 316L, Addit. Manuf., 2018, 24, p 405–418. https://doi.org/10.1016/J.ADDMA.2018.09.035

    Article  CAS  Google Scholar 

  43. J. Rodriguez, A. Zuriarrain, A. Madariaga et al., Mechanical Properties and Fatigue Performance of 17-4 PH Stainless Steel Manufactured by Atomic Diffusion Additive Manufacturing Technology, J. Manuf. Mater. Process., 2023, 7, p 172. https://doi.org/10.3390/JMMP7050172

    Article  CAS  Google Scholar 

  44. M.E. Fitzpatrick, A.T. Fry, P. Holdway et al., Determination of residual stresses by X-ray diffraction, 2005

  45. W.H. Kan, L.N.S. Chiu, C.V.S. Lim et al., A Critical Review on the Effects of Process-Induced Porosity on the Mechanical Properties of Alloys Fabricated by Laser Powder Bed Fusion, J. Mater. Sci., 2022, 57, p 9818–9865. https://doi.org/10.1007/S10853-022-06990-7

    Article  CAS  Google Scholar 

  46. N. Guennouni, A. Barroux, C. Grosjean et al., Comparative Study of the Microstructure Between a Laser Beam Melted 17-4PH Stainless Steel and Its Conventional Counterpart, Mater. Sci. Eng., A, 2021, 823, 141718. https://doi.org/10.1016/j.msea.2021.141718

    Article  CAS  Google Scholar 

  47. A.K. Bhaduri, T.P.S. Gill, G. Srinivasan, and S. Sujith, Optimised Post-Weld Heat Treatment Procedures and Heat Input for Welding 17-4PH Stainless Steel, Sci. Technol. Weld. Joining, 1999, 4, p 295–301. https://doi.org/10.1179/136217199101537905

    Article  CAS  Google Scholar 

  48. A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely, Effects of Process Time Interval and Heat Treatment on the Mechanical and Microstructural Properties of Direct Laser Deposited 316L Stainless Steel, Mater. Sci. Eng. A, 2015, 644, p 171–183. https://doi.org/10.1016/J.MSEA.2015.07.056

    Article  CAS  Google Scholar 

  49. A. Yadollahi, N. Shamsaei, S.M. Thompson et al., Effects of Building Orientation and Heat Treatment on Fatigue behavior of Selective Laser Melted 17-4 PH Stainless Steel, Int. J. Fatigue, 2017, 94, p 218–235. https://doi.org/10.1016/J.IJFATIGUE.2016.03.014

    Article  CAS  Google Scholar 

  50. E.J. Pavlina and C.J. Van Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17, p 888–893. https://doi.org/10.1007/s11665-008-9225-5

    Article  CAS  Google Scholar 

  51. D. Kong, C. Dong, S. Wei et al., About Metastable Cellular Structure in Additively Manufactured Austenitic Stainless Steels, Addit. Manuf., 2021, 38, 101804. https://doi.org/10.1016/J.ADDMA.2020.101804

    Article  CAS  Google Scholar 

  52. D. Kong, C. Dong, X. Ni et al., Mechanical Properties and Corrosion Behavior of Selective Laser Melted 316L Stainless Steel After Different Heat Treatment Processes, J. Mater. Sci. Technol., 2019, 35, p 1499–1507. https://doi.org/10.1016/J.JMST.2019.03.003

    Article  CAS  Google Scholar 

  53. B. AlMangour and J.-M. Yang, Understanding the Deformation Behavior of 17-4 Precipitate Hardenable Stainless Steel Produced by Direct Metal Laser Sintering Using Micropillar Compression and TEM, Int. J. Adv. Manuf. Technol., 2017, 90, p 119–126. https://doi.org/10.1007/s00170-016-9367-9

    Article  Google Scholar 

  54. R. Colaço and R. Vilar, Stabilisation of Retained Austenite in Laser Surface Melted Tool Steels, Mater. Sci. Eng. A, 2004, 385, p 123–127. https://doi.org/10.1016/J.MSEA.2004.06.069

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekanth Asapu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asapu, S., Y, R., Gupta, A. et al. Microstructural and Mechanical Characterization of Selective Laser Melted 17-4 PH Stainless Steel: Effect of Laser Scan Strategy and Heat Treatment. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09470-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09470-y

Keywords

Navigation