Skip to main content
Log in

Optimization of Selective Laser Melting (SLM) Additive Manufacturing Process Parameters of 316L Austenitic Stainless Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Selective laser melting (SLM) is a widely applied process in the metal additive manufacturing industry. The microstructure and mechanical properties of SLM products can be significantly affected by the SLM process parameters. In the present work, optimization of SLM process parameters was performed using the Taguchi optimization method for 316L austenitic stainless steel. Laser power, scan speed, layer thickness, and hatch spacing were selected as the controllable process parameters and relative density, ultimate tensile strength, and elongation as the performance evaluation characteristics. The S/N ratio analysis determined the optimum process parameters of the SLM process in 316L stainless steel. ANOVA analysis predicted that scan speed significantly affected the relative density with a 42.38% contribution and laser power showed contributions of 31.17% and 45.67% for ultimate tensile strength and elongation, respectively. The linear regression model was developed for relative density, ultimate tensile strength, and elongation with the coefficient of determination of 90.17%, 93.06%, and 81.53%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Song B, Zhao X, Li S, Han C, Wei Q, Wen S, Liu J, and Shi J, Front Mech Eng 10 (2015) 111.

    Article  Google Scholar 

  2. Zhong Y, Liu L, Wikman S, Cui D, and Shen Z, J Nucl Mater 470 (2016) 170.

    Article  CAS  Google Scholar 

  3. Marya M, Singh V, Marya S, and Hascoet JY, Metall Mater Trans B 46 (2015) 1654.

    Article  CAS  Google Scholar 

  4. Hong Y, Zhou C, Zheng Y, Zhang L, Zheng J, Chen X, and An B, Mater Sci Eng A 740 (2019) 420.

    Article  Google Scholar 

  5. Hitzler L, Hirsch J, Heine B, Merkel M, Hall W, and Öchsner A, Materials 10 (2017) 1136.

    Article  Google Scholar 

  6. Akbari M and Kovacevic R, Addit Manuf 23 (2018) 487.

    CAS  Google Scholar 

  7. Kruth J, Mercelis P, Van Vaerenbergh J, Froyen L, and Rombouts M, Rapid Prototyp J 11 (2005) 26.

    Article  Google Scholar 

  8. Pinomaa T, Lindroos M, Walbrühl M, Provatas N, and Laukkanen A, Acta Mater 184 (2020) 1.

    Article  CAS  Google Scholar 

  9. Bartolomeu F, Buciumeanu M, Pinto E, Alves N, Carvalho O, Silva F, and Miranda G, Addit Manuf 16 (2017) 81.

    CAS  Google Scholar 

  10. Montero-Sistiaga ML, Godino-Martinez M, Boschmans K, Kruth J, Van Humbeeck J, and Vanmeensel K, Addit Manuf 23 (2018) 402.

    CAS  Google Scholar 

  11. Pacchioni G, Nat Rev Mater 2 (2017) 1.

    Google Scholar 

  12. Mathew MD, Trans Indian Inst Mat 63 (2010) 151.

    Article  CAS  Google Scholar 

  13. Sun Z, Tan X, Tor SB, and Chua CK, NPG Asia Mater 10 (2018) 127.

    Article  CAS  Google Scholar 

  14. Bahl S, Mishra S, Yazar K, Kola IR, Chatterjee K, and Suwas S, Addit Manuf 28 (2019) 65.

    CAS  Google Scholar 

  15. Alsalla HH, Smith C, and Hao L, Rapid Prototyp J 24 (2018) 9

    Article  Google Scholar 

  16. Bansal G, Chandan A, Srivastava V, Krishna KG, Das G, Rajkumar S, Chowdhury SG, and Tarafder S, Trans Indian Natl Acad Eng 6 (2021) 1005.

    Article  Google Scholar 

  17. Im Y, Kim K, Jung K, Lee Y, and Song K, Metall Mater Trans A 50 (2019) 2014.

    Article  CAS  Google Scholar 

  18. Qiu C, Panwisawas C, Ward M, Basoalto HC, Brooks JW, and Attallah MM, Acta Mater 96 (2015) 72.

    Article  CAS  Google Scholar 

  19. Du Plessis A, Yadroitsava I, Yadroitsev I, Le Roux S, and Blaine D, Virtual Phys Prototyp 13 (2018) 266.

    Article  Google Scholar 

  20. Khorasani AM, Gibson I, and Ghaderi AR, Int J Adv Manuf Technol 97 (2018) 3761.

    Article  Google Scholar 

  21. Simchi A, Mater Sci Eng A 428 (2006) 148.

    Article  Google Scholar 

  22. Louvis E, Fox P, and Sutcliffe CJ, J Mater Process Technol 211 (2011) 275.

    Article  CAS  Google Scholar 

  23. Miranda G, Faria S, Bartolomeu F, Pinto E, Madeira S, Mateus A, Carreira P, Alves N, Silva FS, and Carvalho O, Mater Sci Eng A 657 (2016) 43.

    Article  CAS  Google Scholar 

  24. Chua GKH, Choong CYY, and Wong, CH, in Proc 3rd Int Conf Prog Addit Manuf (2018) 613.

  25. Kong D, Ni X, Dong C, Lei X, Zhang L, Man C, Yao J, Cheng X, and Li X, Mater Des 152 (2018) 88.

    Article  CAS  Google Scholar 

  26. Wang YM, Voisin T, McKeown JT, Ye J, Calta NP, Li Z, Zeng Z, Zhang Y, Chen W, Roehling TT, Ott RT, Santala MK, Depond PJ, Matthews MJ, Hazma AV, and Zhu T, Nat Mater 17 (2018) 63.

    Article  CAS  Google Scholar 

  27. Maamoun AH, Xue YF, Elbestawi MA, and Veldhuis SC, Materials 11 (2018) 2343.

    Article  Google Scholar 

  28. Bang GB, Kim WR, Kim HK, Park H, Kim GH, Hyun S, Kwon O, Kim HG, Mater Des 197 (2021)109221.

    Article  CAS  Google Scholar 

  29. AlMangour B, Grzesiak D, Borkar T, and Yang J, Mater Des 138 (2018) 119.

    Article  CAS  Google Scholar 

  30. Simchi A and Pohl H, Mater Sci Eng A 383 (2004) 191.

    Article  Google Scholar 

  31. Gu D and Shen Y, Mater Des 30 (2009) 2903.

    Article  CAS  Google Scholar 

  32. Li R, Shi Y, Wang Z, Wang L, Liu J, and Jiang W, Appl Surf Sci 256 (2010) 4350.

    Article  CAS  Google Scholar 

  33. Choo H, Sham K, Bohling J, Ngo A, Xiao X, Ren Y, Depond PJ, Matthews MJ, and Garlea E, Mater Des 164 (2019) 107534.

    Article  CAS  Google Scholar 

  34. Khorasani M, Ghasemi AH, Awan US, Singamneni S, Littlefair G, Farabi E, Leary M, Gibson I, Veeti JK, and Rolfe B, J Mater Res Technol 12 (2021) 2438.

    Article  CAS  Google Scholar 

  35. Zhu Y, Peng T, Jia G, Zhang H, Xu S, and Yang H, J Clean Prod 208 (2019) 77.

    Article  CAS  Google Scholar 

  36. Junfeng L and Zhengying W, IOP Conf Ser: Mater Sci Eng 269 (2017) 012026

    Article  Google Scholar 

  37. Ni X, Kong D, Wu W, Zhang L, Dong C, He B, Lu L, Wu K and Zhu D, J Mater Eng Perform 27 (2018) 3667.

    Article  CAS  Google Scholar 

  38. Sahoo A, Int J Ind Eng Comput 5 (2014) 295.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. I. Chattoraj, Director, CSIR-National Metallurgical Laboratory, Jamshedpur, for his permission to publish this work and providing financial assistance under the i-PSG initiative with Project No. OLP-0363. Dr. Aniket Dutt is thankful to the Head, KRIT Division (CSIR-NML) for providing with employment opportunity as Project Scientist, under CSIR-Jigyasa Virtual Lab Project (Project No. HCP0101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gopala Krishna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutt, A.K., Bansal, G.K., Tripathy, S. et al. Optimization of Selective Laser Melting (SLM) Additive Manufacturing Process Parameters of 316L Austenitic Stainless Steel. Trans Indian Inst Met 76, 335–345 (2023). https://doi.org/10.1007/s12666-022-02687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02687-2

Keywords

Navigation