Skip to main content
Log in

Hot Deformation Behavior and Dynamic Recrystallization Mechanism Transition of GH4742 Ni-Based Superalloy under Various Deformation Conditions

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this paper, a series of hot compression tests were carried out by using a Thermecamastor-Z thermomechanical simulator in the temperature range of 1020 ~ 1140 °C and a strain rate range of 0.01 ~ 1 s−1. The microstructure evolution mechanism for the GH4742 nickel-based superalloy during hot compression was studied using electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM) techniques. Constitutive models for the γ + γ' double-phase and γ single-phase regions are established. The hot deformation activation energies for γ + γ' double-phase and γ single-phase microstructures are determined to be 828.996 kJ/mol and 230.707 kJ/mol, respectively. Furthermore, the internal relationship between the flow stress, hot processing map, and dynamic recrystallization (DRX) mechanism is analyzed. The results show that the high Z value is mainly located in the instability region, and the DRX mechanism is dominated by discontinuous dynamic recrystallization (DDRX), supplemented by continuous dynamic recrystallization (CDRX), particle-stimulated nucleation (PSN), and the strong pinning of γ' precipitates, which delays the development of DRX. At moderate Z values, the DRX mechanism involves the combined effect of DDRX and weak CDRX, PSN, and γ' precipitate pinning, while at low Z values, the DRX mechanism mainly involves DDRX. The transition for the DRX mechanism is extremely sensitive to the Z value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. X.C. Xia, Y. Peng, J.B. Zhang, X. He, S. Yin, J. Ding, C. Li, X.G. Chen and Y.C. Liu, Precipitation and Growth Behavior of γ′ Phase in Ni3al-Based Superalloy under Thermal Exposure, J. Mater. Sci., 2019, 54, p 13368–13377.

    Article  CAS  Google Scholar 

  2. A. Devaux, E. Georges and P. Héritier, Development of New C&W Superalloys for High Temperature Disk Applications, Adv. Mater. Res., 2011, 278, p 405–410.

    Article  CAS  Google Scholar 

  3. H.Y. Qin, G. Chen, Q. Zhu, C.J. Wang and P. Zhang, High Temperature Low Cycle Fatigue Behavior of Gh4742 Alloy, J. Iron. Steel Res. Int., 2015, 22, p 551–556.

    Article  Google Scholar 

  4. X.D. Lu, J.H. Du, Q. Deng and Z.Y. Zhong, Effect of Slow Cooling Treatment on Hot Deformation Behavior of GH4742 Superalloy, J. Alloys Compd., 2009, 486, p 195–198.

    Article  CAS  Google Scholar 

  5. H.Y. Qin, Q. Tian, W.W. Zhang, Q. Du, H.Z. Li, X.G. Liu and P. Yu, Microstructure Evolution of GH4742 Ni-Based Superalloy During Hot Forming, J. Mater. Eng. Perform., 2022, 31, p 5652–5567.

    Article  CAS  Google Scholar 

  6. Q.Y. Yang, Z.H. Deng, Z.Q. Zhang, Q. Liu, Z.H. Jia and G.H. Huang, Effects of Strain Rate on Flow Stress Behavior and Dynamic Recrystallization Mechanism of Al-Zn-Mg-Cu Aluminum Alloy During Hot Deformation, Mater. Sci. Eng. A, 2016, 662, p 204–213.

    Article  CAS  Google Scholar 

  7. M. Azarbarmas, M. Aghaie Khafri, J.M. Cabrera and J. Calvo, Microstructural Evolution and Constitutive Equations of Inconel 718 Alloy under Quasi-Static and Quasi-Dynamic Conditions, Mater. Des., 2016, 94, p 28–38.

    Article  CAS  Google Scholar 

  8. X.M. Chen, Y.C. Lin and F. Wu, EBSD Study of Grain Growth Behavior and Annealing Twin Evolution after Full Recrystallization in a Nickel-Based Superalloy, J. Alloys Compd., 2017, 724, p 198–207.

    Article  CAS  Google Scholar 

  9. R. Gujrati, C. Gupta, J.S. Jha, S. Mishra and A. Alankar, Understanding Activation Energy of Dynamic Recrystallization in Inconel 718, Mater. Sci. Eng. A, 2019, 744, p 638–651.

    Article  CAS  Google Scholar 

  10. J.B. Zhang, C.J. Wu, Y.Y. Peng, X.C. Xia, J.G. Li, J. Ding, C. Liu, X.G. Chen, J. Dong and Y.C. Liu, Hot Compression Deformation Behavior and Processing Maps of Ati 718plus Superalloy, J. Alloys Compd., 2020, 835, p 155195.

    Article  CAS  Google Scholar 

  11. L. Wang, F. Liu, Q. Zuo, J.J. Cheng and C.F. Chen, Processing Map and Mechanism of Hot Deformation of a Corrosion-Resistant Nickel-Based Alloy, J. Mater. Eng. Perform., 2016, 26, p 392–406.

    Article  Google Scholar 

  12. P. Liu, R. Zhang, Y. Yuan, C.Y. Cui, Y.Z. Zhou and X.F. Sun, Hot Deformation Behavior and Workability of a Ni-Co Based Superalloy, J. Alloys Compd., 2020, 831, p 154618.

    Article  CAS  Google Scholar 

  13. K.A. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya and V.S. Sarma, Hot Deformation Characteristics and Processing Map of a Phosphorous Modified Super Austenitic Stainless Steel, Mater. Des., 2017, 115, p 262–275.

    Article  CAS  Google Scholar 

  14. Y.B. Tan, Y.H. Ma and F. Zhao, Hot Deformation Behavior and Constitutive Modeling of Fine Grained Inconel 718 Superalloy, J. Alloys Compd., 2018, 741, p 85–96.

    Article  CAS  Google Scholar 

  15. Y. Wang, W.Z. Shao, L. Zhen and B.Y. Zhang, Hot Deformation Behavior of Delta-Processed Superalloy 718, Mater. Sci. Eng. A, 2011, 528, p 3218–3227.

    Article  Google Scholar 

  16. G.F. Tian, C.C. Jia, J.T. Liu and B.F. Hu, Experimental and Simulation on the Grain Growth of P/M Nickel-Base Superalloy During the Heat Treatment Process, Mater. Des., 2009, 30, p 433–439.

    Article  CAS  Google Scholar 

  17. H.B. Zhang, K.F. Zhang, S.S. Jiang, H.P. Zhou, C.H. Zhao and X.L. Yang, Dynamic Recrystallization Behavior of a γ′-Hardened Nickel-Based Superalloy During Hot Deformation, J. Alloys Compd., 2015, 623, p 374–385.

    Article  CAS  Google Scholar 

  18. D.F. Li, Q.M. Guo, S.L. Guo, H.J. Peng and Z.G. Wu, The Microstructure Evolution and Nucleation Mechanisms of Dynamic Recrystallization in Hot-Deformed Inconel 625 Superalloy, Mater. Des., 2011, 32, p 696–705.

    Article  CAS  Google Scholar 

  19. X.M. Chen, Y.C. Lin, M.S. Chen, H.B. Li, D.X. Wen, J.L. Zhang and M. He, Microstructural Evolution of a Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2015, 77, p 41–49.

    Article  CAS  Google Scholar 

  20. P. Zhang, C. Hu, C.G. Ding, Q. Zhu and H.Y. Qin, Plastic Deformation Behavior and Processing Maps of a Ni-Based Superalloy, Mater. Des., 2015, 65, p 575–584.

    Article  CAS  Google Scholar 

  21. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang and L.T. Li, Ebsd Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113.

    Article  CAS  Google Scholar 

  22. P. Zhang, C. Hu, Q. Zhu, C.G. Ding and H.Y. Qin, Hot Compression Deformation and Constitutive Modeling of Gh4698 Alloy, Mater. Des., 2015, 65, p 1153–1160.

    Article  CAS  Google Scholar 

  23. Z.P. Wan, L.X. Hu, Y. Sun, T. Wang and Z. Li, Hot Deformation Behavior and Processing Workability of a Ni-Based Alloy, J. Alloys Compd., 2018, 769, p 367–375.

    Article  CAS  Google Scholar 

  24. M.A. Mostafaei and M. Kazeminezhad, Hot Deformation Behavior of Hot Extruded Al–6mg Alloy, Mater. Sci. Eng. A, 2012, 535, p 216–221.

    Article  CAS  Google Scholar 

  25. Y.T. Wu, Y.C. Liu, C. Li, X.C. Xia, Y. Huang, H.J. Li and H.P. Wang, Deformation Behavior and Processing Maps of Ni3Al-Based Superalloy During Isothermal Hot Compression, J. Alloys Compd., 2017, 712, p 687–695.

    Article  CAS  Google Scholar 

  26. N.R. Jaladurgam and A.K. Kanjarla, Hot Deformation Characteristics and Microstructure Evolution of Hastelloy C-276, Mater. Sci. Eng. A, 2018, 712, p 240–254.

    Article  CAS  Google Scholar 

  27. H.B. Zhang, H.P. Zhou, S.X. Qin, J. Liu and X.M. Xu, Effect of Deformation Parameters on Twinning Evolution During Hot Deformation in a Typical Nickel-Based Superalloy, Mater. Sci. Eng. A, 2017, 696, p 290–298.

    Article  CAS  Google Scholar 

  28. D.P. Field, L.T. Bradford, M.M. Nowell and T.M. Lillo, The Role of Annealing Twins During Recrystallization of Cu, Acta Mater., 2007, 55, p 4233–4241.

    Article  CAS  Google Scholar 

  29. D. Jia, W.R. Sun, D.S. Xu, L.X. Yu, X. Xin, W.H. Zhang and F. Qi, Abnormal Dynamic Recrystallization Behavior of a Nickel Based Superalloy During Hot Deformation, J. Alloys Compd., 2019, 787, p 196–205.

    Article  CAS  Google Scholar 

  30. E.S. Puchi-Cabrera, M.H. Staia, J.D. Guérin, J. Lesage, M. Dubar and D. Chicot, An Experimental Analysis and Modeling of the Work-Softening Transient Due to Dynamic Recrystallization, Int. J. Plast., 2014, 54, p 113–131.

    Article  CAS  Google Scholar 

  31. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Thermostatistical Modelling of Hot Deformation in Fcc Metals, Int. J. Plast., 2013, 47, p 202–221.

    Article  CAS  Google Scholar 

  32. M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera and J. Calvo, Dynamic Recrystallization Mechanisms and Twining Evolution During Hot Deformation of Inconel 718, Mater. Sci. Eng. A, 2016, 678, p 137–152.

    Article  CAS  Google Scholar 

  33. S.S. Satheesh Kumar, T. Raghu, P.P. Bhattacharjee, G. Appa Rao and U. Borah, Constitutive Modeling for Predicting Peak Stress Characteristics During Hot Deformation of Hot Isostatically Processed Nickel-Base Superalloy, J. Mater. Sci., 2015, 50, p 6444–6456.

    Article  CAS  Google Scholar 

  34. A.A. Guimaraes and J.J. Jonas, Recrystallization and Aging Effects Associated with the High Temperature Deformation of Waspaloy and Inconel 718, Metall. Trans. A, 1981, 12, p 1655–1666.

    Article  CAS  Google Scholar 

  35. Y. Cao, H.S. Di, J.Q. Zhang, J.C. Zhang, T.J. Ma and R.D.K. Misra, An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel-Chromium Alloy (800h) During Hot Deformation, Mater. Sci. Eng. A, 2013, 585, p 71–85.

    Article  CAS  Google Scholar 

  36. S.A. Sani, H. Arabi and G.R. Ebrahimi, Hot Deformation Behavior and Drx Mechanism in a γ-γ’ Cobalt-Based Superalloy, Mater. Sci. Eng. A, 2019, 764, p 138165.

    Article  CAS  Google Scholar 

  37. R. Ebrahimi and A. Najafizadeh, A New Method for Evaluation of Friction in Bulk Metal Forming, J. Mater. Process. Technol., 2004, 152, p 136–143.

    Article  CAS  Google Scholar 

  38. N. Shkatulyak, Effect of Stacking Fault Energy on the Mechanism of Texture Formation During Alternating Bending of Fcc Metals and Alloys, Int. J. Non. Metall., 2013, 02, p 35–40.

    CAS  Google Scholar 

  39. A. Gholamzadeh and A.K. Taheri, The Prediction of Hot Flow Behavior of Al–6% Mg Alloy, Mech. Res. Commun., 2009, 36, p 252–259.

    Article  Google Scholar 

  40. S.I. Oh, S.L. Semiatin and J.J. Jonas, An Analysis of the Isothermal Hot Compression Test, Metall. Trans. A, 1991, 23, p 963–975.

    Article  Google Scholar 

  41. Y. Cao, H.S. Di, J.C. Zhang and Y.H. Yang, Dynamic Behavior and Microstructural Evolution During Moderate to High Strain Rate Hot Deformation of a Fe–Ni–Cr Alloy (Alloy 800h), J. Nucl. Mater., 2015, 456, p 133–141.

    Article  CAS  Google Scholar 

  42. S.V. Mehtonen, L.P. Karjalainen and D.A. Porter, Hot Deformation Behavior and Microstructure Evolution of a Stabilized High-Cr Ferritic Stainless Steel, Mater. Sci. Eng. A, 2013, 571, p 1–12.

    Article  CAS  Google Scholar 

  43. Y.V.R.K. Prasad, K.P. Rao and S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps, 2nd ed. ASTM International, US, 2015.

    Google Scholar 

  44. H.R. Ezatpour, A. Chaichi and S.A. Sajjadi, The Effect of Al2O3-Nanoparticles as the Reinforcement Additive on the Hot Deformation Behavior of 7075 Aluminum Alloy, Mater. Des., 2015, 88, p 1049–1056.

    Article  CAS  Google Scholar 

  45. X.N. Peng, H.Z. Guo, Z.F. Shi, C. Qin, Z.L. Zhao and Z.K. Yao, Study on the Hot Deformation Behavior of Tc4-Dt Alloy with Equiaxed Α+Β Starting Structure Based on Processing Map, Mater. Sci. Eng. A, 2014, 605, p 80–88.

    Article  CAS  Google Scholar 

  46. L.S. Feng, D. Lv, R.K. Rhein, J.G. Goiri, M.S. Titus, A. Van der Ven, T.M. Pollock and Y. Wang, Shearing of γ′ Particles in Co-Base and Co-Ni-Base Superalloys, Acta Mater., 2018, 161, p 99–109.

    Article  CAS  Google Scholar 

  47. R. Ding and Z.X. Guo, Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization, Acta. mater., 2001, 49, p 3163–3175.

    Article  CAS  Google Scholar 

  48. X.Y. Wang, D.K. Wang, J.S. Jin and J.J. Li, Effects of Strain Rates and Twins Evolution on Dynamic Recrystallization Mechanisms of Austenite Stainless Steel, Mater. Sci. Eng. A, 2019, 761, p 138044.

    Article  CAS  Google Scholar 

  49. S.F. Medina and C.A. Hernandez, General Expression of the Zener-Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloyed Steels, Acta. Mater., 1996, 44, p 137–148.

    Article  CAS  Google Scholar 

  50. P. Poelt, C. Sommitsch, S. Mitsche and M. Walter, Dynamic Recrystallization of Ni-Base Alloys-Experimental Results and Comparisons with Simulations, Mater. Sci. Eng. A, 2006, 420, p 306–314.

    Article  Google Scholar 

  51. S.I. Kim and Y.C. Yoo, Dynamic Recrystallization Behavior of Aisi 304 Stainless Steel, Mater. Sci. Eng. A, 2001, 311, p 108–113.

    Article  Google Scholar 

  52. Y. Wang, W.Z. Shao, L. Zhen and X.M. Zhang, Microstructure Evolution During Dynamic Recrystallization of Hot Deformed Superalloy 718, Mater. Sci. Eng. A, 2008, 486, p 321–332.

    Article  Google Scholar 

  53. S.K. Pradhan, S. Mandal, C.N. Athreya, K.A. Babu, B. de Boer and V.S. Sarma, Influence of Processing Parameters on Dynamic Recrystallization and the Associated Annealing Twin Boundary Evolution in a Nickel Base Superalloy, Mater. Sci. Eng. A, 2017, 700, p 49–58.

    Article  CAS  Google Scholar 

  54. K. Huang, K. Marthinsen, Q. Zhao and R.E. Logé, The Double-Edge Effect of Second-Phase Particles on the Recrystallization Behaviour and Associated Mechanical Properties of Metallic Materials, Prog. Mater Sci., 2018, 92, p 284–359.

    Article  CAS  Google Scholar 

  55. J. Humphreys, G.S. Rohrer and A. Rollett, Recrystallization and Related Annealing Phenomena, 3rd ed. Elsevier, Oxford, 2017.

    Google Scholar 

  56. C.S. Smith and M. Aime, Grains, Phases, and Interfaces: An Interpretation of Microstructure, Metall. Mater. Trans. B, 1948, 41, p 457–494.

    Google Scholar 

  57. Y. Suwa, Phase-Field Simulations of Grain Growth in Two-Dimensional Systems Containing Finely Dispersed Coarsening Particles, Isij Int, 2012, 52, p 582–591.

    Article  CAS  Google Scholar 

  58. F.J. Humphrers, Y. Huang, I. Rough and C. Harris, Electron Backscatter Diffraction of Grain and Subgrain Structures-Resolution Considerations, J. Microsc., 1999, 195, p 212–216.

    Article  Google Scholar 

  59. H. Beladi, P. Cizek and P.D. Hodgson, Dynamic Recrystallization of Austenite in Ni-30 Pct Fe Model Alloy: Microstructure and Texture Evolution, Metall. Mater. Trans. A, 2009, 40, p 1175–1189.

    Article  Google Scholar 

  60. X.T. Zhong, L. Wang, L.K. Huang and F. Liu, Transition of Dynamic Recrystallization Mechanism During Hot Deformation of Incoloy 028 Alloy, J. Mater. Sci. Technol., 2020, 42, p 241–253.

    Article  CAS  Google Scholar 

  61. Y. Wang, W.Z. Shao, L. Zhen, L. Yang and X.M. Zhang, Flow Behavior and Microstructures of Superalloy 718 During High Temperature Deformation, Mater. Sci. Eng. A, 2008, 497, p 479–486.

    Article  Google Scholar 

  62. R.P. de Siqueira, H.R.Z. Sandim and D. Raabe, Particle Stimulated Nucleation in Coarse-Grained Ferritic Stainless Steel, Metall. Mater. Trans. A, 2012, 44, p 469–478.

    Article  Google Scholar 

  63. W. Roberts and B. Ahlblom, A Nucleation Criterion for Dynamic Recrystallization During Hot Working, Acta. Mater., 1978, 26, p 801–813.

    Article  CAS  Google Scholar 

  64. Z. Yanushkevich, A. Belyakov and R. Kaibyshev, Microstructural Evolution of a 304-Type Austenitic Stainless Steel During Rolling at Temperatures of 773–1273 K, Acta Mater., 2015, 82, p 244–254.

    Article  CAS  Google Scholar 

  65. Y.L. Hu, X. Lin, Y.L. Li, S.Y. Zhang, X.H. Gao, F.G. Liu, X. Li and W.D. Huang, Plastic Deformation Behavior and Dynamic Recrystallization of Inconel 625 Superalloy Fabricated by Directed Energy Deposition, Mater. Des., 2020, 186, p 108359.

    Article  CAS  Google Scholar 

  66. X. Wang, Z.W. Huang, B. Cai, N. Zhou, O. Magdysyuk, Y.F. Gao, S. Srivatsa, L.M. Tan and L. Jiang, Formation Mechanism of Abnormally Large Grains in a Polycrystalline Nickel-Based Superalloy During Heat Treatment Processing, Acta Mater., 2019, 168, p 287–298.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science and Technology Major Project (2017-VI-0018-0090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Liu, X., Du, Q. et al. Hot Deformation Behavior and Dynamic Recrystallization Mechanism Transition of GH4742 Ni-Based Superalloy under Various Deformation Conditions. J. of Materi Eng and Perform 32, 3253–3273 (2023). https://doi.org/10.1007/s11665-022-07320-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07320-3

Keywords

Navigation