Skip to main content
Log in

Processing Map and Mechanism of Hot Deformation of a Corrosion-Resistant Nickel-Based Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Hot deformation behavior of a corrosion-resistant nickel-based alloy was studied in temperature range of 1050-1200 °C and strain rate range of 0.001-10 s−1 by employing hot compression tests. An approach of processing map was used to reveal the hot workability and microstructural evolution during the hot deformation. The results show that different stable domains in the processing map associated with the microstructure evolution can be ascribed to different dynamic recrystallization (DRX) mechanisms. The discontinuous dynamic recrystallization (DDRX) grains evolved by the necklace mechanism are finer than those evolved by the ordinary mechanism, respectively, arising from the strong nucleation process and the growth process. If subjected to low temperature and high strain rate, the flow instability domain occurs, due to the continuous dynamic recrystallization (CDRX) based on the evolution of deformation micro-bands within the deformed grains. Based on the processing map, a DRX mechanism map is established, which can provide an idea for designing desired microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.D. Liu, D.Z. Wang, and H.D. Wei, Material Selection and Application of High Performance Stainless Steels Used in Sour Oil and Gas Fields, J. Corros. Prot., 2011, 32(10), p 817–821

    Google Scholar 

  2. B.C. Peng, H.X. Zhang, J. Hong, J.Q. Gao, H.Q. Zhang, J.F. Li, and Q.J. Wang, The Evolution of Precipitates of 22Cr-25Ni-Mo-Nb-N Heat-Resistant Austenitic Steel in Long-Term Creep, Mater. Sci. Eng. A, 2010, 527, p 4424–4430

    Article  Google Scholar 

  3. J.C. Pivin, D. Delaunay, C. Roques-Carmes, A.M. Huntz, and P. Lacormbe, Oxidation Mechanism of Fe-Ni20-25Cr-5Al Alloys-Influence of Small Amounts of Yttrium on Oxidation Kinetics and Oxide Adherence, Corros. Sci., 1980, 20, p 351–373

    Article  Google Scholar 

  4. C.Y. Sun, G. Liu, Q.D. Zhang, R. Liu, and L.L. Wang, Determination of Hot Deformation Behavior and Processing Maps of IN 028 Alloy Using Isothermal Hot Compression Test, Mater. Sci. Eng. A, 2014, 595, p 92–98

    Article  Google Scholar 

  5. A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi, and A. Marandi, Constitutive Description of High Temperature Flow Behavior of Sanicro-28 Super-Austenitic Stainless Steel, Mater. Sci. Eng. A, 2014, 589, p 76–85

    Article  Google Scholar 

  6. L. Wang, F. Liu, Q. Zuo, and C.F. Chen, Prediction of Flow Stress for N08028 Alloy Under Hot Working Conditions, Mater. Des., 2013, 47, p 737–745

    Article  Google Scholar 

  7. L. Wang, F. Liu, J.J. Chen, Q. Zuo, and C.F. Chen, Hot Deformation Characteristics and Processing Map Analysis for Nickel-Based Corrosion Resistant Alloy, J. Alloy. Compd., 2015, 623, p 69–78

    Article  Google Scholar 

  8. D.Y. Cai, L.Y. Xiao, W.C. Liu, G.D. Sun, and M. Yao, Characterization of Hot Deformation Behavior of a Ni-Base Superalloy Using Processing Map, Mater. Des., 2009, 30, p 921–925

    Article  Google Scholar 

  9. H. Jiang, J.X. Dong, M.C. Zhang, L. Zheng, and Z.H. Yao, Hot Deformation Characteristics of Alloy 617B Nickel-Based Superalloy: A Study Using Processing Map, J. Alloys. Compd., 2015, 647, p 338–350

    Article  Google Scholar 

  10. Y. Wu, M. Zhang, X. Xie, J. Dong, F. Lin, and S. Zhao, Hot Deformation Characteristics and Processing Map Analysis of a New Designed Nickel-Based Alloy for 700 & #xB0;C A-USC Power Plant, J. Alloys. Compd., 2016, 656, p 119–131

    Article  Google Scholar 

  11. J. Wang, J. Dong, M. Zhang, and X. Xie, Hot Working Characteristics of Nickel-Base Superalloy 740H During Compression, Mater. Sci. Eng. A, 2013, 566, p 61–70

    Article  Google Scholar 

  12. Y. Cao, H.S. Di, J.Q. Zhang, T.J. Ma, and J.C. Zhang, Research on Hot Deformation Behavior and Hot Work Ability of Alloy 800H, Acta Metal. Sin., 2013, 49, p 811–821

    Article  Google Scholar 

  13. A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 5467–5473

    Article  Google Scholar 

  14. A. Momeni and K. Dehghani, Hot Working Behavior of 2205 Austenite–Ferrite Duplex Stainless Steel Characterized by Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2010, 528, p 1448–1454

    Article  Google Scholar 

  15. T. Zhang, K.P. Rao, Y.V.R. Prasad, and M. Gupta, Processing Maps, Microstructure Evolution and Deformation Mechanisms of Extruded AZ31-DMD During Hot Uniaxial Compression, Mater. Sci. Eng. A, 2013, 559, p 773–781

    Article  Google Scholar 

  16. Y.V.R. Prasad, H.L. Gegel, S.M. Doeaivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892

    Article  Google Scholar 

  17. J.B. Jia, K.F. Zhang, L.M. Liu, and F.Y. Wu, Hot Deformation Behavior and Processing Map of a Powder Metallurgy Ti–22Al–25Nb Alloy, J. Alloys Compd., 2014, 600, p 215–221

    Article  Google Scholar 

  18. Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258

    Article  Google Scholar 

  19. M.E. Wahabi, L. Gavard, F. Montheillet, J.M. Cabrera, and J.M. Prado, Effect of Initial Grain Size on Dynamic Recrystallization in High Purity Austenitic Stainless Steels, Acta Mater., 2005, 53, p 4605–4612

    Article  Google Scholar 

  20. T. Sakai and J.J. Jonas, Overview No. 35 Dynamic Recrystallization: Mechanical and Microstructural Considerations, Acta Metall., 1984, 32, p 189–209

    Article  Google Scholar 

  21. J.M. Cabrera, A.A. Omar, J.J. Jonas, and J.M. Prado, Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel Under Hot Working Conditions, Metal. Mater. Trans. A, 1997, 28, p 2233–2244

    Article  Google Scholar 

  22. Y. Cao, H.S. Di, J.Q. Zhang, J.C. Zhang, T.J. Ma, and R.D.K. Misra, An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel-Chromium Alloy (800H) During Hot Deformation, Mater. Sci. Eng. A, 2013, 585, p 71–85

    Article  Google Scholar 

  23. T. Sakai, M.G. Akben, and J.J. Jonas, Dynamic Recrystallization During the Transient Deformation of a Vanadium Microalloyed Steel, Acta Metall., 1983, 31, p 631–642

    Article  Google Scholar 

  24. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207

    Article  Google Scholar 

  25. S. Gourdet and F. Montheillet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 51, p 2685–2699

    Article  Google Scholar 

  26. A. Belyakov, K. Tsuzaki, H. Miura, and T. Sakai, Effect of Initial Microstructures on Grain Refinement in a Stainless Steel by Large Strain Deformation, Acta Mater., 2003, 51, p 847–861

    Article  Google Scholar 

  27. H. McQueen, Development of Dynamic Recrystallization Theory, Mater. Sci. Eng. A, 2004, 387, p 203–208

    Article  Google Scholar 

  28. S. Gourdet and F. Montheillet, An Experimental Study of the Recrystallization Mechanism During Hot Deformation of Aluminium, Mater. Sci. Eng. A, 2000, 283, p 274–288

    Article  Google Scholar 

  29. ASTM E209. Standard Practice for Compression Tests of Metallic Materials at Elevated Temperatures With Conventional or Rapid Heating Rates and Strain Rates. Annual Book of ASTM Standard, ASTM International, PA, USA, 2010.

  30. D. Samantaray, S. Mandal, and A.K. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32, p 2797–2802

    Article  Google Scholar 

  31. N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev, Dynamic recrystallization Mechanisms Operating in a Ni-20% Cr Alloy Under Hot-to-Warm Working, Acta Mater., 2010, 58, p 3624–3632

    Article  Google Scholar 

  32. A.N. Behera, A. Chaudhuri, R. Kapoor, J.K. Chakravartty, and S. Suwas, High Temperature Deformation Behavior of Nb–1 wt.%Zr Alloy, Mater. Des., 2016, 92, p 750–759

    Google Scholar 

  33. A.D. Manshadi and P.D. Hodgson, Dynamic Recrystallization of Austenitic Stainless Steel Under Multiple Peak Behaviours, ISIJ Inter., 2007, 47(12), p 1799–1803

    Article  Google Scholar 

  34. H.L. Gegel, J.C. Malas, and S.M. Doraivelu, Process Modeling of p/m Extrusion, Innovations in Materials Processing, G. Bruggeman and V. Weiss, Ed., Plenum Press, New York, 1985, p 137–159

    Chapter  Google Scholar 

  35. H. Ziegler, Progress in Solid Mechanics, I.N. Sneddon and R. Hill, Ed., Wiley, New York, 1965, p 91–193

    Google Scholar 

  36. A. Laasraoui and J. Jonas, Prediction of Steel Flow Stresses at High Temperatures and Strain Rates, Metall. Trans. A, 1991, 22, p 1545–1558

    Article  Google Scholar 

  37. Y. Cao, H.S. Di, R.D.K. Misra, X. Yi, J.C. Zhang, and T.J. Ma, On the Hot Deformation Behavior of AISI, 420 Stainless Steel Based on Constitutive Analysis and CSL Model, Mater. Sci. Eng. A, 2014, 593, p 111–119

    Article  Google Scholar 

  38. Y. Cao, H.S. Di, J.C. Zhang, and Y.H. Yang, Dynamic Behavior and Microstructural Evolution During Moderate to High Strain Rate Hot Deformation of a Fe-Ni-Cr Alloy (alloy 800H), J. Nucl. Mater., 2015, 456, p 133–141

    Article  Google Scholar 

  39. G. Liu, Y. Han, Z. Shi, J. Sun, D. Zou, and G. Qiao, Hot Deformation and Optimization of Process Parameters of an As-Cast 6Mo Super Austenitic Stainless Steel: A Study with Processing Map, Mater. Des., 2014, 53, p 662–672

    Article  Google Scholar 

  40. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamin, Oxford, 2004

    Google Scholar 

  41. M. Jafari and A. Najafizadeh, Correlation Between Zener-Hollomon Parameter and Necklace DRX During Hot Deformation of 316 Stainless Steel, Mater. Sci. Eng. A, 2009, 501, p 16–25

    Article  Google Scholar 

  42. Z.H. Wang, W.T. Fu, S.H. Sun, H. Li, Z.Q. Lv, and D.L. Zhao, Mechanical Behavior and Microstructural Change of a High Nitrogen CrMn Austenitic Stainless Steel During Hot Deformation, Metall. Mater. Trans. A, 2010, 41A, p 1025–1032

    Article  Google Scholar 

  43. Z.H. Wang, S.H. Sun, B. Wang, Z.P. Shi, R.H. Zhang, and W.T. Fu, Effect of Grain Size on Dynamic Recrystallization and Hot-Ductility Behaviors in High-Nitrogen CrMn Austenitic Stainless Steel, Metall. Mater. Trans. A, 2014, 45A, p 3631–3639

    Article  Google Scholar 

  44. A. Belyakov, H. Miura, and T. Sakai, Dynamic Recrystallization Under Warm Deformation of a 304 Type Austenitic Stainless Steel, Mater. Sci. Eng. A, 1998, 255, p 139–147

    Article  Google Scholar 

  45. D. Ponge and G. Gottstein, Necklace Formation During Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46(1), p 69–80

    Article  Google Scholar 

  46. H. Beladi, P. Cizek, and P. Hodgson, Dynamic Recrystallization of Austenite in Ni-30Pct Fe Model Alloy: Microstructure and Texture Evolution, Metall. Mater. Trans. A, 2009, 40, p 1175–1189

    Article  Google Scholar 

  47. D.A. Hughes, Microstructural Evolution in a Non-cell Forming Metal: Al-Mg, Acta Metall., 1993, 41, p 1421–1430

    Article  Google Scholar 

  48. Y. Wang, L. Zhen, W.Z. Shao, L. Yang, and X.M. Zhang, Hot Working Characteristics and Dynamic Recrystallization of Delta-Processed Superalloy 718, J. Alloys Compd., 2009, 474, p 341–346

    Article  Google Scholar 

  49. Z. Yanushkevich, A. Belyakov, and R. Kaibyshev, Microstructural Evolution of a 304-Type Austenitic Stainless Steel During Rolling at Temperatures of 773-1273K, Acta Mater., 2005, 82, p 244–254

    Article  Google Scholar 

  50. M. Tikhonova, A. Belyakov, and R. Kaibyshev, Strain-Induced Grain Evolution in an Austenitic Stainless Steel Under Warm Multiple Forging, Mater. Sci. Eng. A, 2013, 564, p 413–422

    Article  Google Scholar 

  51. A. Belyakov, T. Sakai, H. Miura, and R. Kaibyshev, Grain Refinement Under Multiple Warm Deformation in 304 Type Austenitic Stainless Steel, ISIJ Int., 1999, 39(6), p 592–599

    Article  Google Scholar 

  52. T. Fujii, R. Watanabe, Y. Hiraoka, and M. Okada, Preparation of a Large-Scale Molybdenum Single-Crystal Sheet by Means of Secondary Recrystallization, J. Less. Common. Met., 1984, 96, p 297–304

    Article  Google Scholar 

  53. Y. Hiraoka, T. Fujii, T. Kainuma, M. Okada, and R. Watanabe, Mechanical Properties of Molybdenum Single Crystals Produced by Means of Secondary Recrystallization, J. Nucl. Mater., 1985, 33, p 332–336

    Article  Google Scholar 

  54. E.M. Taleff, N.A. Pedrazas, A New Route for Growing Large Grains in Metals, Science, 2013, 341(6153), p 1461–1462

    Article  Google Scholar 

  55. J. Ciulik and E.M. Taleff, Dynamic Abnormal Grain Growth: A New Method to Produce Single Crystals, Scr. Mater., 2009, 61, p 895–898

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Natural Science Foundation of China (Nos. 51134011, 51101122, and 51071127), the National Basic Research Program of China (973 Program, No. References 2011CB610403), the China National Funds for Distinguished Young Scientists (No. 51125002), the Fundamental Research Fund (Nos. JC20120223) and the 111 Project (No. B08040) of Northwestern Polytechnical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, F., Zuo, Q. et al. Processing Map and Mechanism of Hot Deformation of a Corrosion-Resistant Nickel-Based Alloy. J. of Materi Eng and Perform 26, 392–406 (2017). https://doi.org/10.1007/s11665-016-2414-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2414-8

Keywords

Navigation