Skip to main content
Log in

Microstructure Evolution of GH4742 Ni-Based Superalloy during Hot Forming

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, the microstructure evolution and dynamic recrystallization (DRX) mechanism of double-cone specimens of GH4742 superalloys during hot compression were studied by means of various microtechniques. Two hot deformation regimes are designed and implemented, i.e., γ single-phase region (1080-1100 °C) and γ + γ′ double-phase region (1120-1140 °C). Microstructure analysis shows that coarse carbides (> 1 μm) promote the development of DRX through PSN, and the contribution to recrystallization is more than 5 times that of the fraction of carbides. Moreover, the average recrystallized grain size of PSN is always smaller than the average DRX grain size, and it does not exceed 7 μm and even deforms at a higher temperature of 1140 °C. When deformed in the double-phase region, a large number of fine γ' particles with a diameter less than 0.8 μm hinder DRX. In addition to traditional dynamic recrystallization (DRX), twin recrystallization begins at the initial deformation twin boundary, and necklace recrystallized grains are formed inside the grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. W.W. Kong, C. Yuan, B.N. Zhang, H.Y. Qin and G.P. Zhao, Investigation on Low-Cycle Fatigue Behaviors of Wrought Superalloy GH4742 at Room-Temperature and 700 °C, Mater. Sci. Eng. A, 2019, 751, p 226–236.

    Article  CAS  Google Scholar 

  2. X.D. Lu, J.H. Du, Q. Deng and Z.Y. Zhong, Effect of Slow Cooling Treatment on Hot Deformation Behavior of GH4742 Superalloy, J. Alloys Compd., 2009, 486, p 195–198.

    Article  CAS  Google Scholar 

  3. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238, p 219–274.

    Article  Google Scholar 

  4. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207.

    Article  CAS  Google Scholar 

  5. A. Dehghan-Manshadi, M.R. Barnett and P.D. Hodgson, Recrystallization in AISI 304 Austenitic Stainless Steel during and After Hot Deformation, Mater. Sci. Eng. A, 2008, 485, p 664–672.

    Article  Google Scholar 

  6. H. Beladi, P. Cizek and P.D. Hodgson, Dynamic Recrystallization of Austenite in Ni-30 Pct Fe Model Alloy: Microstructure and Texture Evolution, Metall. Mater. Trans. A, 2019, 40, p 1175–1189.

    Article  Google Scholar 

  7. S. Gourdet and F. Montheillet, An Experimental Study of the Recrystallization Mechanism during Hot Deformation of Aluminium, Mater. Sci. Eng. A, 2000, 283, p 274–288.

    Article  Google Scholar 

  8. A. Galiyev, R. Kaibyshev and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49, p 1199–1207.

    Article  CAS  Google Scholar 

  9. S. Gourdet and F. Montheillet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 51, p 2685–2699.

    Article  CAS  Google Scholar 

  10. K. Tsuzaki, X.X. Huang and T. Maki, Mechanism of Dynamic Continuous Recrystallization during Superplastic Deformation in a Microduplex Stainless Steel, Acta Mater., 1996, 44, p 4491–4499.

    Article  CAS  Google Scholar 

  11. N.M. Xiao, P. Hodgson, B. Rolfe and D.Z. Li, Modelling Discontinuous Dynamic Recrystallization using a Quantitative Multi-Order-Parameter Phase-Field Method, Comp. Mater. Sci., 2018, 155, p 298–311.

    Article  CAS  Google Scholar 

  12. D.K. Guan, W.M. Rainforth, L. Ma, B. Wynne and J.H. Gao, Twin Recrystallization Mechanisms and Exceptional Contribution to Texture Evolution during Annealing in a Magnesium Alloy, Acta Mater., 2017, 126, p 132–144.

    Article  CAS  Google Scholar 

  13. A.D. Manshadi, M.R. Barnett and P.D. Hodgson, Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization, Metall. Mater. Trans. A, 2008, 39, p 1359–1370.

    Article  Google Scholar 

  14. A. Korbel, J.D. Embury, M. Hatherly, P.L. Martin and H.W. Erbsloh, Microstructural Aspects of Strain Localization in Al-Mg Alloys, Acta Metall., 1986, 34, p 1999–2009.

    Article  CAS  Google Scholar 

  15. Q.Y. Yu, Z.H. Yao and J.X. Dong, Deformation and Recrystallization Behavior of a Coarse-Grain, Nickel-Base Superalloy Udimet720Li Ingot Material, Mater. Charact., 2015, 107, p 398–410.

    Article  CAS  Google Scholar 

  16. O. Sitdikov and R. Kaibyshev, Dynamic Recrystallization in Pure Magnesium, Mater. Trans., 2001, 42, p 1928–1937.

    Article  CAS  Google Scholar 

  17. T. Wang, J.J. Jonas and S. Yue, Dynamic Recrystallization Behavior of a Coarse-Grained Mg-2Zn-2Nb Magnesium Alloy, Metall. Mater. Trans. A, 2017, 48, p 594–600.

    Article  CAS  Google Scholar 

  18. Q. Ma, B. Li, E.B. Marin and S.J. Horstemeyer, Twinning-Induced Dynamic Recrystallization in a Magnesium Alloy Extruded at 450 °C, Scripta Mater., 2011, 65, p 823–826.

    Article  CAS  Google Scholar 

  19. S.W. Xu, S. Kamado, N. Matsumoto, T. Honma and Y. Kojima, Recrystallization Mechanism of As-Cast AZ91 Magnesium Alloy during Hot Compressive Deformation, Mater. Sci. Eng. A, 2009, 527, p 52–60.

    Article  Google Scholar 

  20. H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Honma and E.H. Han, Twins, Shear Bands and Recrystallization of a Mg-2.0%Zn-0.8%Gd Alloy during Rolling, Scripta Mater., 2011, 64, p 141–144.

    Article  CAS  Google Scholar 

  21. K. Huang, K. Marthinsen, Q.L. Zhao and R.E. Logé, The Double-Edge Effect of Second-Phase Particles on the Recrystallization Behaviour and Associated Mechanical Properties of Metallic Materials, Prog. Mater. Sci., 2018, 92, p 284–359.

    Article  CAS  Google Scholar 

  22. A. Belyakov, F.G. Wei, K. Tsuzaki, Y. Kimura and Y. Mishima, Incomplete Recrystallization in Cold Worked Steel Containing TiC, Mater. Sci. Eng. A, 2007, 471, p 50–56.

    Article  Google Scholar 

  23. G. Zhou, H. Ding, F.R. Cao and B.J. Zhang, A comparative Study of Various Flow Instability Criteria in Processing Map of Superalloy GH4742, J. Mater. Sci. Technol., 2014, 30, p 217–222.

    Article  CAS  Google Scholar 

  24. H.B. Zhang, H.P. Zhou, S.X. Qin, J. Liu and X.M. Xu, Effect of Deformation Parameters on Twinning Evolution during Hot Deformation in a Typical Nickel-Based Superalloy, Mater. Sci. Eng. A, 2017, 696, p 290–298.

    Article  CAS  Google Scholar 

  25. D.G. Brandon, The Structure of High-Angle Boundaries, Acta Metall., 1966, 14, p 1479–1484.

    Article  CAS  Google Scholar 

  26. S. Mandal, A.K. Bhaduri and V.S. Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization during Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 1062–1072.

    Article  CAS  Google Scholar 

  27. D. Ponge and G. Gottstein, Necklace Formation during Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., 1998, 46, p 69–80.

    Article  CAS  Google Scholar 

  28. L. Wang, G. Xie, J. Zhang and L.H. Lou, On the Role of Carbides during the Recrystallization of a Directionally Solidified Nickel-Base Superalloy, Scripta Mater., 2006, 55, p 457–460.

    Article  CAS  Google Scholar 

  29. Y. Cao, H.S. Di, J.Q. Zhang, J.C. Zhang, T.J. Ma and R.D.K. Misra, An Electron Backscattered Diffraction Study on the Dynamic Recrystallization Behavior of a Nickel-Chromium Alloy (800H) during Hot Deformation, Mater. Sci. Eng. A, 2013, 585, p 71–85.

    Article  CAS  Google Scholar 

  30. S.K. Pradhan, S. Mandal, C.N. Athreya, K. Arun Babu, B. de Boer and V. Subramanya Sarma, Influence of Processing Parameters on Dynamic Recrystallization and the Associated Annealing Twin Boundary Evolution in a Nickel Base Superalloy, Mater. Sci. Eng. A, 2017, 700, p 49–58.

    Article  CAS  Google Scholar 

  31. D.P. Field, L.T. Bradford, M.M. Nowell and T.M. Lillo, The Role of Annealing Twins during Recrystallization of Cu, Acta Mater., 2007, 55, p 4233–4241.

    Article  CAS  Google Scholar 

  32. X.W. Yang, W.Y. Li, J. Ma, S.T. Hu, Y. He, L. Li and B. Xiao, Thermo-Physical Simulation of the Compression Testing for Constitutive Modeling of GH4169 Superalloy during Linear Friction Welding, J. Alloys Compd., 2016, 656, p 385–407.

    Article  Google Scholar 

  33. A. Momeni, K. Dehghani and G.R. Ebrahimi, Modeling the Initiation of Dynamic Recrystallization using a Dynamic Recovery Model, J. Alloys Compd., 2011, 509, p 9387–9393.

    Article  CAS  Google Scholar 

  34. J. Humphreys, G.S. Rohrer and A. Rollett, Recrystallization and Related Annealing Phenomena, 3rd ed. Elsevier, Oxford, 2017.

    Google Scholar 

  35. D.G. Cram, H.S. Zurob, Y.J.M. Brechet and C.R. Hutchinson, Modelling Discontinuous Dynamic Recrystallization using a Physically Based Model for Nucleation, Acta Mater., 2009, 57, p 5218–5228.

    Article  CAS  Google Scholar 

  36. S.A. Sani, G.R. Ebrahimi and A.R.K. Rashid, Hot Deformation Behavior and Dynamic Recrystallization Kinetics of AZ61 and AZ61 + Sr Magnesium Alloys, J. Magnes. Alloys, 2016, 4, p 104–114.

    Article  Google Scholar 

  37. S. Mahajan, C.S. Pande, M.A. Imam and B.B. Rath, Formation of Annealing Twins in fcc Crystals, Acta Mater, 1997, 45, p 2633–2638.

    Article  CAS  Google Scholar 

  38. D.P. Field, L.T. Bradford, M.M. Nowell and T.M. Lillo, The Role of Annealing Twins during Recrystallization of Cu, Acta Mater, 2007, 55, p 4233–4241.

    Article  CAS  Google Scholar 

  39. M. Zouari, N. Bozzolo and R.E. Loge, Mean Field Modelling of Dynamic and Post-Dynamic Recrystallization during Hot Deformation of Inconel 718 in the Absence of δ Phase Particles, Mater. Sci. Eng. A, 2016, 655, p 408–424.

    Article  CAS  Google Scholar 

  40. S.A. Sania, H. Arabia and G.R. Ebrahimib, Hot Deformation Behavior and DRX Mechanism in a γ-γ′ Cobalt-Based Superalloy, Mater. Sci. Eng. A, 2019, 764, p 138165.

    Article  Google Scholar 

  41. X.Y. Song and M. Rettenmayr, Modeling Recrystallization in a Material Containing Fine and Coarse Particles, Comp. Mater. Sci., 2007, 40, p 234–245.

    Article  CAS  Google Scholar 

  42. S.F. Zhang, W.D. Zeng, D.D. Zhou, Y.J. Lai and Q.Y. Zhao, The Particle Stimulated Nucleation in Ti-35V-15Cr-0.3Si-0.1C Alloy, Mater. Lett., 2016, 166, p 317–320.

    Article  CAS  Google Scholar 

  43. Y.H. Zhang, D.J. Jensen, Y.B. Zhang, F.X. Lin, Z.Q. Zhang and Q. Liu, Three-Dimensional Investigation of Recrystallization Nucleation in a Particle-Containing Al Alloy, Scripta Mater., 2012, 67, p 320–323.

    Article  CAS  Google Scholar 

  44. A. Halfpenny, D.J. Prior and J. Wheeler, Analysis of Dynamic Recrystallization and Nucleation in a Quartzite Mylonite, Tectonophysics, 2006, 427, p 3–14.

    Article  CAS  Google Scholar 

  45. J.L. Brimhall, M.J. Klein and R.A. Huggins, Influence of a Finely Dispersed Second Phase on Recrystallization, Acta Metall., 1966, 14, p 459–466.

    Article  CAS  Google Scholar 

  46. F.J. Humphreys, Recrystallization Mechanisms in Two-Phase Alloys, Met. Sci., 1979, 13, p 139–145.

    Article  Google Scholar 

  47. X.J. Ye, X.J. Gong, B.B. Yang, Y.P. Li and Y. Nie, Deformation Inhomogeneity Due to Sample-Anvil Friction in Cylindrical Compression Test, Trans. Nonferrous Met. Soc. China, 2019, 29, p 279–286.

    Article  CAS  Google Scholar 

  48. H. Miura, T. Sakai, R. Mogawa and G. Gottstein, Nucleation of Dynamic Recrystallization at Grain Boundaries in Copper Bicrystals, Scripta Mater., 2004, 51, p 671–675.

    Article  CAS  Google Scholar 

  49. D. Lunt, X. Xu, T. Busolo, J. Quinta da Fonseca and M. Preuss, Quantification of Strain Localisation in a Bimodal Two-Phase Titanium Alloy, Scripta Mater., 2018, 145, p 45–49.

    Article  CAS  Google Scholar 

  50. L. Cao, P. Wollgramm, D. Bürger, A. Kostka, G. Cailletaud and G. Eggeler, How Evolving Multiaxial Stress States Affect the Kinetics of Rafting during Creep of Single Crystal Ni-Base Superalloys, Acta Mater., 2018, 158, p 381–392.

    Article  CAS  Google Scholar 

  51. M. Kamaraj, Rafting in Single Crystal Nickel-Base Superalloys—An Overview, Sādhanā, 2003, 28, p 115–128.

    Article  CAS  Google Scholar 

  52. M. Véron, Y. Bréchet and F. Louchet, Strain Induced Directional Coarsening in Ni Based Superalloys, Scripta Mater., 1996, 34, p 1883–1886.

    Article  Google Scholar 

  53. A. Epishin, T. Link, M. Nazmy, M. Staubli, H. Klingelhöffer and G. Nolze, Microstructural Degradation of CMSX-4: Kinetics and Effect on Mechanical Properties, Superalloys, 2008, 725–731

  54. H.J. Yang, J.H. Zhang, Y.B. Xu and M.A. Meyers, Microstructural Characterization of the Shear Bands in Fe-Cr-Ni Single Crystal by EBSD, J. Mater. Sci. Technol., 2008, 24, p 819–828.

    CAS  Google Scholar 

  55. D.J. Badiola, A.I. Mendia and I. Gutiérrez, Evaluation of Intragranular Misorientation Parameters Measured by EBSD in a Hot Worked Austenitic Stainless Steel, J. Microsc., 2007, 228, p 373–383.

    Article  Google Scholar 

  56. M.A. Charpagne, T. Billot, J.M. Franchet and N. Bozzolo, Heteroepitaxial Recrystallization: A New Mechanism Discovered in a Polycrystalline γ-γ′ Nickel Based Superalloy, J. Alloys Compd., 2016, 688, p 685–694.

    Article  CAS  Google Scholar 

  57. C. Schafer, J. Song and G. Gottstein, Modeling of Texture Evolution in the Deformation Zone of Second-Phase Particles, Acta Mater., 2009, 57, p 1026–1034.

    Article  Google Scholar 

  58. J.D. Robson, D.T. Henry and B. Davis, Particle Effects on Recrystallization in Magnesium-Manganese Alloys: Particle-Stimulated Nucleation, Acta Mater., 2009, 57, p 2739–2747.

    Article  CAS  Google Scholar 

  59. E.I. Galindo-Nava, L.D. Connor and C.M.F. Rae, On the Prediction of the Yield Stress of Unimodal and Multimodal γ′ Nickel-Base Superalloys, Acta Mater., 2015, 98, p 377–390.

    Article  CAS  Google Scholar 

  60. S. Poulat, B. Decamps, L. Priester and J. Thibault, Incorporation Processes of Extrinsic Dislocations in Singular, Vicinal and General Grain Boundaries in Nickel, Mater. Sci. Eng. A, 2001, 309–310, p 483–485.

    Article  Google Scholar 

  61. Y. Takayama and J.A. Szpunar, Stored Energy and Taylor Factor Relation in an Al-Mg-Mn Alloy Sheet Worked by Continuous Cyclic Bending, Mater. Trans., 2004, 45, p 2316–2325.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Science and Technology Major Project (2017-VI-0018-0090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Tian, Q., Zhang, W. et al. Microstructure Evolution of GH4742 Ni-Based Superalloy during Hot Forming. J. of Materi Eng and Perform 31, 5652–5667 (2022). https://doi.org/10.1007/s11665-022-06636-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06636-4

Keywords

Navigation