Skip to main content
Log in

Neural Network Modeling of NiTiHf Shape Memory Alloy Transformation Temperatures

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Data-driven techniques are used to predict the transformation temperatures (TTs) of NiTiHf shape memory alloy. A machine learning (ML) approach is used to overcome the high-dimensional dependency of NiTiHf TTs on numerous factors, as well as the lack of fully known governing physics. The elemental composition, thermal treatments, and post-processing steps that are commonly used to process NiTiHf and have an impact on the material phase transitions are used as input parameters of the neural network model (NN) to design the TTs. Such a feature selection led to the use of most of the accessible information in the literature on NiTiHf TTs, as all processing features required to be fed into the NN model. Considering most of the regular NiTiHf processing factors also enables the option of tuning additional characteristics of NiTiHf in addition to the TTs. The work is unique as all the four main TTs and their associated peak transformation temperatures are predicted to have complete control over the material phase change thresholds. Since 1995, extensive experimental research has been conducted to design NiTiHf TTs with a large temperature range of around 800 °C, paving the path for the current work’s ML algorithms to be fed. A thorough data collection is created using both unpublished data and available literature and then analyzed to select twenty input parameters to feed the NN model. To forecast the NiTiHf TTs, a total of 173 data points were gathered, verified, and selected. The model's overall determination factor (R2) was 0.96, suggesting the viability of the proposed NN model in demonstrating the link between material composition and processing factors, as well as identifying the TTs of NiTiHf alloy. The effort additionally validates the generated results against existing data in the literature. The validation confirms the significance of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Af:

Austenite finish temperature

Ap:

Austenite peak temperature

As:

Austenite start temperature

HTSMAs:

High-temperature shape memory alloys

LPBF:

Laser powder bed fusion

LTSMAs:

Low-transformation-temperature shape memory alloys

Mf:

Martensite finish temperature

ML:

Machine learning

MLP:

Multilayer perceptron

Mp:

Martensite peak temperature

Ms:

Martensite start temperature

NN:

Neural network

SMAs:

Shape memory alloys

SDA:

Suspended droplet alloying

TTs:

Transformation temperatures

TH:

Transformation hysteresis

References

  1. A.D. Spear, S.R. Kalidindi, B. Meredig, A. Kontsos, and J.B. le Graverend, Data-Driven Materials Investigations: The Next Frontier in Understanding and Predicting Fatigue Behavior, Jom, 2018, 70(7), p 1143–1146.

    Article  Google Scholar 

  2. J. Ling, M. Hutchinson, E. Antono, S. Paradiso, and B. Meredig, High-Dimensional Materials and Process Optimization Using Data-driven Experimental Design with Well-calibrated Uncertainty Estimates, Integr. Mater. Manuf. Innov., 2017, 6(3), p 207–217.

    Article  Google Scholar 

  3. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, The High-throughput Highway to Computational Materials Design, Nat. Mater., 2013, 12(3), p 191–201.

    Article  CAS  Google Scholar 

  4. Y. Liu, T. Zhao, W. Ju, S. Shi, S. Shi, and S. Shi, Materials Discovery and Design using Machine Learning, J. Mater., 2017, 3(3), p 159–177.

    Google Scholar 

  5. J.M. Cole, A Design-to-device Pipeline for Data-driven Materials Discovery, Acc. Chem. Res., 2020, 53(3), p 599–610.

    Article  CAS  Google Scholar 

  6. N.S. Johnson, P.S. Vulimiri, A.C. To, X. Zhang, C.A. Brice, B.B. Kappes, and A.P. Stebner, Invited Review: Machine Learning for Materials Developments in Metals Additive Manufacturing, Addit. Manuf., 2020, 36, p 101641.

    CAS  Google Scholar 

  7. W. Yan, S. Lin, O.L. Kafka, Y. Lian, C. Yu, Z. Liu, J. Yan, S. Wolff, H. Wu, E. Ndip-Agbor, and M. Mozaffar, Data-Driven Multi-scale Multi-physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing, Comput. Mech., 2018, 61(5), p 521–541.

    Article  Google Scholar 

  8. X. Qi, G. Chen, Y. Li, X. Cheng, and C. Li, Applying Neural-Network-Based Machine Learning to Additive Manufacturing: Current Applications, Challenges, and Future Perspectives, Engineering, 2019, 5(4), p 721–729.

    Article  Google Scholar 

  9. L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, A General-purpose Machine Learning Framework for Predicting Properties of Inorganic Materials, NPJ Comput. Mater., 2016, 2(1), p 1–7.

    Article  Google Scholar 

  10. L.M. Ghiringhelli, J. Vybiral, S.V. Levchenko, C. Draxl, and M. Scheffler, Big Data of Materials Science: Critical Role of the Descriptor, Phys. Rev. Lett., 2015, 114(10), p 1–5.

    Article  Google Scholar 

  11. V. Stanev, C. Oses, A.G. Kusne, E. Rodriguez, J. Paglione, S. Curtarolo, and I. Takeuchi, Machine Learning Modeling of Superconducting Critical Temperature, NPJ Comput. Mater., 2018, 4(1), p 1–14.

    Article  Google Scholar 

  12. F. Ren, L. Ward, T. Williams, K.J. Laws, C. Wolverton, J. Hattrick-Simpers, and A. Mehta, Accelerated Discovery of Metallic Glasses Through Iteration of Machine Learning and High-Throughput Experiments, Sci. Adv., 2018, 4(4), p eaaq1566.

    Article  Google Scholar 

  13. O. Isayev, C. Oses, C. Toher, E. Gossett, S. Curtarolo, and A. Tropsha, Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals, Nat. Commun., 2017, 8, p 1–12.

    Article  Google Scholar 

  14. A.O. Oliynyk, E. Antono, T.D. Sparks, L. Ghadbeigi, M.W. Gaultois, B. Meredig, and A. Mar, High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds, Chem. Mater., 2016, 28(20), p 7324–7331.

    Article  CAS  Google Scholar 

  15. G. Krauss, in Steels: processing, structure, and performance (2015)

  16. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation Commentary: The Materials Project: A Materials Genome, APL Mater., 2013, 1, p 011002.

    Article  Google Scholar 

  17. E. Kim, K. Huang, A. Saunders, A. Mccallum, G. Ceder, and E. Olivetti, Materials Synthesis Insights from Scientific Literature Via Text Extraction and Machine Learning, Chem. Mater., 2017, 29(21), p 9436–9444.

    Article  CAS  Google Scholar 

  18. E. Kim, K. Huang, S. Jegelka, and E. Olivetti, Virtual Screening of Inorganic Materials Synthesis Parameters with Deep Learning, NPJ. Comput. Mater., 2017, 3(1), p 1–9.

    Article  CAS  Google Scholar 

  19. V. Tshitoyan, J. Dagdelen, L. Weston, A. Dunn, Z. Rong, O. Kononova, K.A. Persson, G. Ceder, and A. Jain, Unsupervised Word Embeddings Capture Latent Knowledge From Materials Science Literature, Nature, 2019, 571, p 95–98.

    Article  CAS  Google Scholar 

  20. L. Scime and J. Beuth, Using Machine Learning to Identify In-situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder Bed Fusion Additive Manufacturing Process, Addit. Manuf., 2019, 25, p 151–165.

    CAS  Google Scholar 

  21. T. Prater, Database Development for Additive Manufacturing, 2017, Prog. Addit. Manuf., 2(1), p 11–18.

    Google Scholar 

  22. R. Pollice, G. dos Passos Gomes, M. Aldeghi, R.J. Hickman, M. Krenn, C. Lavigne, M. Lindner-D’Addario, A. Nigam, C.T. Ser, Z. Yao, and A. Aspuru-Guzik, Data-Driven Strategies for Accelerated Materials Design, Acc. Chem. Res., 2021, 54(4), p 849–860.

    Article  CAS  Google Scholar 

  23. D. Chen, D.I.W. Levin, S. Sueda, and W. Matusik, Data-driven Finite Elements for Geometry and Material Design, ACM Trans. Graph., 2015, 34(4), p 1–10.

    Google Scholar 

  24. J. Xiong, S.Q. Shi, and T.Y. Zhang, A Machine-learning Approach to Predicting and Understanding the Properties of Amorphous Metallic Alloys, Mater. Des., 2020, 187, p 108378.

    Article  CAS  Google Scholar 

  25. X. Huang, H. Wang, W. Xue, A. Ullah, S. Xiang, H. Huang, L. Meng, G. Ma, and G. Zhang, A Combined Machine Learning Model for the Prediction of Time-Temperature-Transformation Diagrams of High-Alloy Steels, J. Alloys Compd., 2020, 823, p 153694.

    Article  CAS  Google Scholar 

  26. C. Zou, J. Li, W.Y. Wang, Y. Zhang, D. Lin, R. Yuan, X. Wang, B. Tang, J. Wang, X. Gao, and H. Kou, Integrating Data Mining and Machine Learning to Discover High-strength Ductile Titanium Alloys, Acta Mater., 2020, 202, p 211–221.

    Article  Google Scholar 

  27. J. Li, B. Xie, Q. Fang, B. Liu, Y. Liu, and P.K. Liaw, High-throughput Simulation Combined Machine Learning Search for Optimum Elemental Composition in Medium Entropy Alloy, J. Mater. Sci. Technol., 2021, 68, p 70–75.

    Article  CAS  Google Scholar 

  28. P. Liu, H. Huang, S. Antonov, C. Wen, D. Xue, H. Chen, L. Li, Q. Feng, T. Omori, and Y. Su, Machine Learning Assisted Design of γ′-Strengthened Co-Base Superalloys with Multi-Performance Optimization, NPJ Comput Mater., 2020, 6(1), p 1–9.

    Article  Google Scholar 

  29. F. Yang, Z. Li, Q. Wang, B. Jiang, B. Yan, P. Zhang, W. Xu, C. Dong, and P.K. Liaw, Cluster-Formula-Embedded Machine Learning for Design of Multicomponent β-Ti Alloys with Low Young’s Modulus, NPJ Comput. Mater., 2020, 6(1), p 1–11.

    Article  CAS  Google Scholar 

  30. J. Li, Y. Zhang, X. Cao, Q. Zeng, Y. Zhuang, X. Qian, and H. Chen, Accelerated Discovery of High-Strength Aluminum Alloys by Machine Learning, Commun. Mater., 2020, 1(1), p 1–10.

    Article  Google Scholar 

  31. C. Xinyu, Z. Yingbo, L. Jiaheng, and C. Hui, Composition Design of 7XXX Aluminum Alloys Optimizing Stress Corrosion Cracking Resistance using Machine Learning Mater, Res. Express, 2020, 7(4), p 046506.

    Article  Google Scholar 

  32. C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, and Y. Su, Machine Learning Assisted Design of High Entropy Alloys with Desired Property, Acta Mater., 2019, 170, p 109–117.

    Article  CAS  Google Scholar 

  33. Y.J. Chang, C.Y. Jui, W.J. Lee, and A.C. Yeh, Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning, Jom, 2019, 71(10), p 3433–3442.

    Article  CAS  Google Scholar 

  34. K. Koenuma, A. Yamanaka, I. Watanabe, and T. Kuwabara, Estimation of Texture-Dependent Stress-Strain Curve and r-Value of Aluminum Alloy Sheet Using Deep Learning, Mater. Trans., 2020, 12, p 2276–2283.

    Article  Google Scholar 

  35. M. Sasaki, S. Ju, Y. Xu, J. Shiomi, and M. Goto, “Identifying Optimal Strain in Bismuth Telluride Thermoelectric Film by Combinatorial Gradient Thermal Annealing and Machine Learning, ACS Comb. Sci., 2020, 22, p 782–790.

    Article  CAS  Google Scholar 

  36. G.D. Pang, Y.C. Lin, Y.L. Qiu, Y.Q. Jiang, Y.W. Xiao, and M.S. Chen, Dislocation Density-Based Model and Stacked Auto-Encoder Model for Ti-55511 Alloy with Basket-weave Microstructures Deformed in α + β Region, Adv. Eng. Mater., 2021, 23(4), p 1–9.

    Article  Google Scholar 

  37. A. Alafaghani, M.A. Ablat, H. Abedi, and A. Qattawi, Modeling the Influence of fused Filament Fabrication Processing Parameters on the Mechanical Properties of ABS Parts, J. Manuf. Process., 2021, 71, p 711–723.

    Article  Google Scholar 

  38. J.H. Kim, F. Inaba, T. Fukuda, and T. Kakeshita, Effect of Magnetic Field on Martensitic Transformation Temperature in Ni-Mn-Ga Ferromagnetic Shape Memory Alloys, Acta Mater., 2006, 54(2), p 493–499.

    Article  CAS  Google Scholar 

  39. E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, Elastocaloric Effect Associated with the Martensitic Transition in Shape-memory Alloys, Phys. Rev. Lett., 2008, 100(12), p 1–4.

    Article  Google Scholar 

  40. K. Safaei, H. Abedi, M. Nematollahi, F. Kordizadeh, H. Dabbaghi, P. Bayati, R. Javanbakht, A. Jahadakbar, M. Elahinia, and B. Poorganji, Additive Manufacturing of NiTi Shape Memory Alloy for Biomedical Applications: Review of the LPBF Process Ecosystem, JOM, 2021, 73, p 3771–3786.

    Article  CAS  Google Scholar 

  41. T. Duerig, A. Pelton, and D. Sto, An Overview of Nitinol Medical Applications, Mater. Sci. Eng. A, 1999, 275, p 149–160.

    Article  Google Scholar 

  42. K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511–678.

    Article  CAS  Google Scholar 

  43. J.A. Shaw and S. Kyriakides, Thermomechanical Aspects of NiTi, J. Mech. Phys. Solids, 1995, 43(8), p 1243–1281.

    Article  CAS  Google Scholar 

  44. M. Elahinia, N. Shayesteh Moghaddam, M. Taheri Andani, A. Amerinatanzi, B.A. Bimber, and R.F. Hamilton, Fabrication of NiTi Through Additive Manufacturing: A Review”, Prog. Mater. Sci., 2016, 83, p 630–663.

    Article  CAS  Google Scholar 

  45. P. Haghdoust, ALo. Conte, S. Cinquemani, and N. Lecis, Investigation of Shape Memory Alloy Embedded Wind Turbine Blades for the Passive Control of Vibrations, Smart Mater. Struct., 2018, 27(10), p 105012.

    Article  Google Scholar 

  46. J. Ma, I. Karaman, R.D. Noebe, J. Ma, I. Karaman, and R.D. Noebe, High Temperature Shape Memory Alloys, Int. Mater. Rev., 2010, 55(5), p 257–315.

    Article  CAS  Google Scholar 

  47. M. Es-Souni, M. Es-Souni, and H. Fischer-Brandies, Assessing the Biocompatibility of NiTi Shape Memory Alloys used for Medical Applications, Anal. Bioanal. Chem., 2005, 381(3), p 557–567.

    Article  CAS  Google Scholar 

  48. D.J. Hartl, D.C. Lagoudas, F.T. Calkins, and J.H. Mabe, Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization, Smart Mater. Struct., 2010, 19(1), p 015020.

    Article  Google Scholar 

  49. H.E. Karaca, I. Kaya, H. Tobe, B. Basaran, M. Nagasako, R. Kainuma, and Y. Chumlyakov, Shape Memory Behavior of High Strength Ni54Ti46 Alloys, Mater. Sci. Eng. A, 2013, 580, p 66–70.

    Article  CAS  Google Scholar 

  50. H.E. Karaca, E. Acar, H. Tobe, and S.M. Saghaian, NiTiHf-Based Shape Memory Alloys, Mater. Sci. Technol., 2014, 30(13), p 1530–1544.

    Article  CAS  Google Scholar 

  51. L. Janke, C. Czaderski, M. Motavalli, and J. Ruth, Applications of Shape Memory Alloys in Civil Engineering Structures - Overview, Limits and New Ideas, Mater. Struct. Constr., 2005, 38(279), p 578–592.

    Article  CAS  Google Scholar 

  52. S.M. Kornegay, M. Kapoor, B.C. Hornbuckle, D. Tweddle, M.L. Weaver, O. Benafan, G.S. Bigelow, R.D. Noebe, and G.B. Thompson, Influence of H-phase Precipitation on the Microstructure and Functional and Mechanical Properties in a Ni-rich NiTiZr Shape Memory Alloy, Mater. Sci. Eng. A, 2020, 801, p 140401.

    Article  Google Scholar 

  53. L. Casalena, D.R. Coughlin, F. Yang, X. Chen, H. Paranjape, Y. Gao, R.D. Noebe, G.S. Bigelow, D.J. Gaydosh, S.A. Padula, and Y. Wang, Transformation and Deformation Characterization of NiTiHf and NiTiAu High Temperature Shape Memory Alloys. ASM International - International Conference on Shape Memory and Superelastic Technologies, SMST 2015, pp. 157–158

  54. G.S. Bigelow, S.A. Padula, A. Garg, D. Gaydosh, and R.D. Noebe, Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys Under Load-Biased Thermal Cycling, Metall. Mater. Trans. Phys. Metall. Mater. Sci., 2010, 41(12), p 3065–3079.

    Article  CAS  Google Scholar 

  55. B. Lin, K. Gall, H.J. Maier, and R. Waldron, Structure and Thermomechanical Behavior of NiTiPt Shape Memory Alloy Wires, Acta Biomater., 2009, 5(1), p 257–267.

    Article  CAS  Google Scholar 

  56. M.K. Ibrahim, E. Hamzah, S.N. Saud, E.M. Nazim, and A. Bahador, Influence of Ce Addition on Biomedical Porous Ti-51 Atomic Percentage (at.%) Ni shape Memory Alloy Fabricated by Microwave Sintering, AIP Conf. Proc, 2017, 1901, p 196–203.

    Google Scholar 

  57. A. Tuissi et al., Radiopaque Shape Memory Alloys: NiTi–Er with Stable Superelasticity, Shape Mem. Superelasticity, 2016, 2(2), p 196–203.

    Article  Google Scholar 

  58. D.R. Angst, P.E. Thoma, and M.Y. Kao, The Effect of Hafnium Content on the Transformation Temperatures of Ni 49 Ti 51–x Hf x. Shape Memory Alloys, J. Phys. IV, 1995, 05(C8), p C8-747-C8-752.

    Google Scholar 

  59. G.S. Firstov, J. Van Humbeeck, and Y.N. Koval, Comparison of High Temperature Shape Memory Behaviour for ZrCu-Based, Ti-Ni-Zr and Ti-Ni-Hf Alloys, Scr. Mater., 2004, 50(2), p 243–248.

    Article  CAS  Google Scholar 

  60. G.S. Firstov, J. Van Humbeeck, and Y.N. Koval, High Temperature Shape Memory Alloys Problems and Prospects, J. Intell. Mater. Syst. Struct., 2006, 17(12), p 1041–1047.

    Article  CAS  Google Scholar 

  61. Y. Zhou et al., Strain Glass in Doped Ti50(Ni50-xD x) (D = Co, Cr, Mn) Alloys: Implication for the Generality of Strain Glass in Defect-containing Ferroelastic Systems, Acta Mater., 2010, 58(16), p 5433–5442.

    Article  CAS  Google Scholar 

  62. O. Benafan, G.S. Bigelow, A. Garg, and R.D. Noebe, Viable Low Temperature Shape Memory Alloys Based on Ni-Ti-Hf Formulations, Scr. Mater., 2019, 164, p 115–120.

    Article  CAS  Google Scholar 

  63. S. Liu, B. B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang, and A. P. Stebner, Physics-informed machine learning for composition–process–property design: Shape memory alloy demonstration, Appl. Mater. Today, 2021, 22, p 100898.

  64. S. Besseghini, E. Villa, and A. Tuissi, Ni-Ti-Hf Shape Memory Alloy: Effect of Aging and Thermal Cycling, Mater. Sci. Eng. A, 1999, 273–275, p 390–394.

    Article  Google Scholar 

  65. P.E. Thoma and J.J. Boehm, Effect of Composition on the Amount of Second Phase and Transformation Temperatures of NixTi90-xHf10 Shape Memory Alloys, Mater. Sci. Eng. A, 1999, 273–275, p 385–389.

    Article  Google Scholar 

  66. A. Panchal and T.K. Nandy, Effect of Composition, Heat Treatment and Deformation on Mechanical Properties of Tungsten Heavy Alloys, Mater. Sci. Eng. A, 2018, 733, p 374–384.

    Article  CAS  Google Scholar 

  67. I. Cvijović-Alagić, Z. Cvijović, J. Bajat, and M. Rakin, Composition and Processing Effects on the Electrochemical Characteristics of Biomedical Titanium Alloys, Corros. Sci., 2014, 83, p 245–254.

    Article  Google Scholar 

  68. W. Zhao, A. Pizzi, V. Fierro, G. Du, and A. Celzard, Effect of Composition and Processing Parameters on the Characteristics of Tannin-Based Rigid Foams. Part I: Cell Structure, Mater. Chem. Phys., 2010, 122(1), p 175–182.

    Article  CAS  Google Scholar 

  69. W. Zhao, V. Fierro, A. Pizzi, G. Du, and A. Celzard, Effect of Composition and Processing Parameters on the Characteristics of Tannin-based Rigid Foams. Part II: Physical Properties, Mater. Chem. Phys., 2010, 123(1), p 210–217.

    Article  CAS  Google Scholar 

  70. L. Lasa and J.M. Rodriguez-Ibabe, Effect of Composition and Processing Route on the Wear Behaviour of Al-Si Alloys, Scr. Mater., 2002, 46(6), p 477–481.

    Article  CAS  Google Scholar 

  71. F.J. Navarro, P. Partal, F. Martínez-Boza, and C. Gallegos, Effect of Composition and Processing on the Linear Viscoelasticity of Synthetic Binders, Eur. Polym. J., 2005, 41(6), p 1429–1438.

    Article  CAS  Google Scholar 

  72. J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler, On the effect of Alloy Composition on Martensite Start Temperatures and Latent Heats in Ni-Ti-based Shape Memory Alloys, Acta Mater., 2015, 90, p 213–231.

    Article  CAS  Google Scholar 

  73. A.W. Young, R.W. Wheeler, N.A. Ley, O. Benafan, and M.L. Young, Microstructural and Thermomechanical Comparison of Ni-Rich and Ni-Lean NiTi-20 at.% Hf High Temperature Shape Memory Alloy Wires, Shape Mem. Superelasticity, 2019, 5(4), p 397–406.

    Article  Google Scholar 

  74. H.E. Karaca et al., Effects of Nanoprecipitation on the Shape Memory and Material Properties of an Ni-rich NiTiHf High Temperature Shape Memory Alloy, Acta Mater., 2013, 61(19), p 7422–7431.

    Article  CAS  Google Scholar 

  75. A. Evirgen, F. Basner, I. Karaman, R.D. Noebe, J. Pons, and R. Santamarta, Effect of Aging on the Martensitic Transformation Characteristics of a Ni-Rich NiTiHf High Temperature Shape Memory Alloy, Funct. Mater. Lett., 2012, 5(4), p 1–5.

    Article  Google Scholar 

  76. O. Benafan, G.S. Bigelow, and D.A. Scheiman, Transformation Behavior in NiTi-20Hf Shape Memory Alloys—Transformation temperatures and hardness, Scr. Mater., 2018, 146, p 251–254.

    Article  CAS  Google Scholar 

  77. M. Nematollahi et al., Additive Manufacturing of Ni-Rich NiTiHf20: Manufacturability, Composition, Density, and Transformation Behavior, Shape Mem. Superelasticity, 2019, 5(1), p 113–124.

    Article  Google Scholar 

  78. M. Nematollahi et al., Laser Powder Bed Fusion of nitihf High-temperature Shape Memory Alloy: Effect of Process Parameters on the Thermomechanical Behavior, Metals (Basel), 2020, 10(11), p 1–21.

    Article  Google Scholar 

  79. K. Kirkpatrick and J. Valasek, Active Length Control of Shape Memory Alloy Wires using Reinforcement Learning, J. Intell. Mater. Syst. Struct., 2011, 22(14), p 1595–1604.

    Article  Google Scholar 

  80. M. Mehrpouya, A. Gisario, M. Nematollahi, A. Rahimzadeh, K.S. Baghbaderani, and M. Elahinia, The Prediction Model for Additively Manufacturing of NiTiHf High-temperature Shape Memory Alloy, Mater. Today Commun., 2021, 26, 102022.

    Article  CAS  Google Scholar 

  81. S. Liu, B.B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang, and A.P. Stebner, Physics-Informed Machine Learning for Composition–Process–Property Design: Shape Memory Alloy Demonstration, Appl. Mater. Today, 2021, 22, p 100898.

    Article  Google Scholar 

  82. X.-P. Zhao, H.-Y. Huang, C. Wen, Y.-J. Su, and P. Qian, Accelerating the Development of Multi-Component Cu-Al-Based Shape Memory Alloys with High Elastocaloric Property by Machine Learning, Comput. Mater. Sci., 2020, 176, p 109521.

    Article  CAS  Google Scholar 

  83. M. Davidson, NiTiHf Shape memory alloys, Citrination. (2018). https://doi.org/10.25920/cw8a-6w49. [Online]. Available: https://citrination.com/datasets/164141/show_search?searchMatchOption=fuzzyMatch

  84. M. Mehrpouya, A. Gisario, A. Rahimzadeh, M. Nematollahi, K.S. Baghbaderani, and M. Elahinia, A Prediction Model for Finding the Optimal Laser Parameters in Additive Manufacturing of NiTi Shape Memory Alloy, Int. J. Adv. Manuf. Technol., 2019, 105(11), p 4691–4699.

    Article  Google Scholar 

  85. M. Moshref-Javadi, S.H. Seyedein, M.T. Salehi, and M.R. Aboutalebi, Age-induced Multi-Stage Transformation in a Ni-Rich NiTiHf Alloy, Acta Mater., 2013, 61(7), p 2583–2594.

    Article  CAS  Google Scholar 

  86. S. Li, N.J.E. Adkins, S. McCain, and M.M. Attallah, Suspended Droplet Alloying: A New Method for Combinatorial Alloy Synthesis; Nitinol-based Alloys as an example, J. Alloys Compd., 2018, 768, p 392–398.

    Article  CAS  Google Scholar 

  87. S. Li, Development and processing of Ti-Ni-based shape memory alloys using laser melting techniques (Doctoral dissertation, University of Birmingham), 2017.

  88. P.L. Potapov, A.V. Shelyakov, A.A. Gulyaev, E.L. Svistunova, N.M. Matveeva, and D. Hodgson, Effect of Hf on the Structure of Ni-Ti Martensitic Alloys, Mater. Lett., 1997, 32(4), p 247–250.

    Article  CAS  Google Scholar 

  89. V.G. Pushin, N.N. Kuranova, A.V. Pushin, A.N. Uksusnikov, and N.I. Kourov, Structure and Thermoelastic Martensitic Transformations in Ternary Ni–Ti–Hf Alloys with a High-temperature Shape Memory Effect, Tech. Phys., 2016, 61(7), p 1009–1014.

    Article  CAS  Google Scholar 

  90. C.C. Wojcik, Properties and Heat Treatment of High Transition Temperature Ni-Ti-Hf Alloys, J. Mater. Eng. Perform., 2009, 18(5–6), p 511–516.

    Article  CAS  Google Scholar 

  91. F. Chollet, in Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler der Keras-Bibliothek (MITP-Verlags GmbH & Co. KG., 2018)

  92. S. Roweis, in Levenberg-Marquardt Optimization, Notes, University Of Toronto, 1996.

  93. K. Gurney, in An Introduction to Neural Networks, CRC press, 2018.

  94. G. Martínez Arellano and S. Ratchev, Towards an Active Learning Approach to Tool Condition Monitoring with Bayesian Deep Learning, Proc. Eur. Counc. Model. Simulation ECMS, 2019, 33(1), p 223–229.

    Article  Google Scholar 

  95. O. Karakoc et al., Role of Microstructure on the Actuation Fatigue Performance of Ni-Rich NiTiHf High Temperature Shape Memory Alloys, Acta Mater., 2019, 175, p 107–120.

    Article  CAS  Google Scholar 

  96. Y. Tong, F. Chen, B. Tian, L. Li, and Y. Zheng, Microstructure and Martensitic Transformation of Ti49Ni51 - xHfx High Temperature Shape Memory Alloys, Mater. Lett., 2009, 63(21), p 1869–1871.

    Article  CAS  Google Scholar 

  97. S. Buytoz, F. Dagdelen, I.N. Qader, M. Kok, and B. Tanyildizi, Microstructure Analysis and Thermal Characteristics of NiTiHf Shape Memory Alloy with Different Composition, Met. Mater. Int., 2021, 27, p 767–778.

    Article  CAS  Google Scholar 

  98. P. Olier, J.C. Brachet, J.L. Bechade, C. Foucher, and G. Guénin, Investigation of Transformation Temperatures, Microstructure and Shape Memory Properties of NiTi, NiTiZr and NiTiHf Alloys, J. Phys. IV, 1995, 05(C8), p C8-741-C8-746.

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Qattawi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

NiTiHf data set: the description of the most important features, the number of data points, and the related references.

Data set description

No. of data sets

References

The study implemented the suspended droplet alloying (SDA) fabrication method. This method showed to increase the TTs

7

Ref 87

The work arc melted the NiTiHf with additional post-processing like homogenization, extrusion, solutionizing, and several additional processes at different temperatures. The work demonstrates how each processing step changes the transformation temperatures

47

Ref 76

The material Arc melted and homogenized before TT measurement with the DSC instrument

5

Ref 96

The study published in 1995 is focused on the ternary NiTiHf arc melted and homogenized. The TTs are measured for the different atomic percentages of NiTiHF and reported. Exploring the chemical composition effect on TTs is less studied which is the core of this work. A part of the data shows the effect of material heating with different temperatures on TTs for Ni49Ti41Hf10. This study reported only the martensitic and austenitic peak temperatures. The rest of the outputs are assumed to be similar to the typically DSC results reported in this article. The data can be aggregated in the data set as the arc melting, homogenization, and DSC measurements are the standard methods that exist even before the data of this publication

24

Ref 58

The study is focused on Ni50.8Ti29.2Hf20 and Ni49.8Ti30.2Hf20 Materials

Material fabricated by induction skull melting followed by homogenization and extrusion. Then, the extruded wires were solutionized. After that, the materials were subjected to different heat treatments at different temperatures, such as heating, hot rolling, further solutionizing, and aging. Finally, the TTs were measured by the DSC technique for different conditions and reported in the article

26

Ref 73

This study reports the additive manufacturing of Ni50.4Ti29.6Hf20 with a selective laser melting technique. Only one data set is added to the study

1

Ref 77

In this study, the Ni50TiHf are studied with different amounts of Ti and Hf. The material is an electric arc melted and re-melted three times for homogenization, subsequent hot upsetting by 5-10% in a press, long-term annealing at 1073 K in argon, and quenching.

7

Ref 89

This study has a significant effect on the data sets as it presents the NiTiHf shape memory alloy with low transformation temperatures. The study discusses that if the Hf amount is in the range lower than 12%, the NiTiHf can show very low transformation temperature, and the related data are added to the article. In this study, only the martensitic finish transformation temperature is reported. The rest of the TTs are assumed based on the average difference of the TTs of the whole data set

15

Ref 62

This study reported the TTs amounts for Ni50TiHf, Hf amounts of 6, 8, and 10%. The materials are prepared with arc melting, followed by hot rolling, aging, or annealing, and the related TTs are plotted. The effect of the oxygen level is discussed for NiTiHf. The works (Ref 62) and (Ref 90) are presenting the TTs for Ni50.3Ti39.7Hf10 and Ni50Ti40Hf10 with hot rolling or without hot rolling, resulting in more than 100 °C differences in TTs

12

Ref 90

The study implemented the melt spinning fabrication approach, followed by rapid quenching. Ni48.9TiHf with 5 different atomic percentages of Hf ranging from 8 to 20% are considered.

5

Ref 88

In this study, Ni50.3Ti29.7Hf20 was manufactured with induction melting followed by homogenization at 1050 °C for 72 h and then extruded at 900 °C. The material then aged at different temperatures ranging from 300 to 900 °C, and the TTs were reported. Results confirmed a continuous TT decrease for aging temperature 400 °C and a continuous TT increase for aging with 500 °C with increasing the aging time.

8

Ref 74

In this article, three different NiTiHf atomic percentages are investigated for the TT curves. The effect of thermal cycling is also investigated. Material heat is treated up to 60 times at 800 or 900 °C. The study concluded that the TTs would become stable after 20 thermal cycles

3

Ref 64

In this article, NiTi70Hf material with different atomic percentages of the Ni and Hf are fabricated by Arc Melting, and the related TTs are reported. The study is one of the rare ones which present Hf atomic percentages lower than 10%

3

Ref 97

The study measured the TTs for Ni38Ti50Hf12. This study considers the Ternary NiTiZr and the effect of thermal cycling on the TTs

1

Ref 98

In this study, the Ni50.3Ti34.7Hf15 is fabricated by induction melting, homogenized at 1050 °C, hot extruded at 900 °C e (7:1), heat-treated at 900 °C for 1 h and then aged at various temperatures and times. This study discusses the effect of aging on the TTs

5

Ref 75

In this work, Ni50.3Ti34.7Hf15 is fabricated through arc melting, homogenization, solution treatment, hot rolling, and aging at 450 or 550 °C at different timing from 0.5 to 72 h. The data added to the model are the one related to 3 h aging. It is observed that the aging timing of more than 10 did not result in any significant changes in TTs

3

Ref 85

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedi, H., Baghbaderani, K.S., Alafaghani, A. et al. Neural Network Modeling of NiTiHf Shape Memory Alloy Transformation Temperatures. J. of Materi Eng and Perform 31, 10258–10270 (2022). https://doi.org/10.1007/s11665-022-06995-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-06995-y

Keywords

Navigation