Skip to main content
Log in

Estimation of Transformation Temperatures in Ti–Ni–Pd Shape Memory Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present study focused on estimating the complex nonlinear relationship between the composition and phase transformation temperatures of Ti–Ni–Pd shape memory alloys by artificial neural networks (ANN). The ANN models were developed by using the experimental data of Ti–Ni–Pd alloys. It was found that the predictions are in good agreement with the trained and unseen test data of existing alloys. The developed model was able to simulate new virtual alloys to quantitatively estimate the effect of Ti, Ni, and Pd on transformation temperatures. The transformation temperature behavior of these virtual alloys is validated by conducting new experiments on the Ti–rich thin film that was deposited using multi target sputtering equipment. The transformation behavior of the film was measured by varying the composition with the help of aging treatment. The predicted trend of transformational temperatures was explained with the help of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Liu, M. Kohl, K. Okutsu, S. Miyazaki, Mater. Sci. Eng. A 378, 205–209 (2004)

    Article  Google Scholar 

  2. S. Shimizu, Y. Xu, E. Okunishi, S. Tanaka, K. Otsuka, K. Mitose, Mater. Lett. 34, 23–29 (1998)

    Article  Google Scholar 

  3. R. Delville, D. Schryvers, Intermetallics 18, 2353–2360 (2010)

    Article  Google Scholar 

  4. R. Zarnetta, E. Zelaya, G. Eggeler, A. Ludwig, Scr. Mater. 60, 352–355 (2009)

    Article  Google Scholar 

  5. S.-W. Kim, C.H. Park, J.H. Kim, J.K. Hong, J.-T. Yeom, J. Alloys Compd. 610, 315–321 (2014)

    Article  Google Scholar 

  6. J.G. Fuentes, P. Gumpel, J. Strittmatter, Adv. Eng. Mater. 4, 437–452 (2002)

    Article  Google Scholar 

  7. J. Van Humbeeck, J. Eng. Mater. Technol. 121, 98–101 (1999)

    Article  Google Scholar 

  8. H.K.D.H. Bhadeshia, ISIJ Int. 39, 966–979 (1999)

    Article  Google Scholar 

  9. N.S. Reddy, B.B. Panigrahi, C.M. Ho, J.H. Kim, C.S. Lee, Comput. Mater. Sci. 107, 175–183 (2015)

    Article  Google Scholar 

  10. W. Sha, S. Malinov, Titanium Alloys: Modelling of Microstructure, Properties and Applications (Elsevier, New York, 2009)

    Book  Google Scholar 

  11. O. Eyercioglu, E. Kanca, M. Pala, E. Ozbay, J. Mater. Process. Technol. 200, 146–152 (2008)

    Article  Google Scholar 

  12. D. Tanikić, M. Manić, S. Ranđelović, D. Đenadić, D. Brodić, Int. J. Res. Eng. Technol. 3, 1–6 (2014)

    Google Scholar 

  13. D. Golberg, Y. Xu, Y. Murakami, K. Otsuka, T. Ueki, H. Horikawa, Mater. Lett. 22, 241–248 (1995)

    Article  Google Scholar 

  14. N.S. Reddy, A.K. Prasada Rao, M. Chakraborty, B.S. Murty, Mater. Sci. Eng. A 391, 131–140 (2005)

    Article  Google Scholar 

  15. J. Ma, I. Karaman, R.D. Noebe, Int. Mater. Rev. 55, 257–315 (2010)

    Article  Google Scholar 

  16. Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, Sens. Actuators A 112, 395–408 (2004)

    Article  Google Scholar 

  17. C. Zhang, C. Yang, G. Ding, J. Wu, Mater. Charact. 59, 957–960 (2008)

    Article  Google Scholar 

  18. S. Miyazaki, Y. Fu, W. Huang, Thin Film Shape Memory Alloys: Fundamentals and Device Applications, vol. 1 (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  19. D. Golberg, Y. Xu, Y. Murakami, S. Morito, K. Otsuka, T. Ueki, H. Horikawa, Intermetallics 3, 35–46 (1995)

    Article  Google Scholar 

  20. R. Delville, D. Schryvers, Intermetallics 18, 2353–2360 (2010)

    Article  Google Scholar 

  21. S.-H. Wei, C.-C. Lin, J. Mater. Res. 29, 923–934 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Industrial Strategic Technology Development Program (10042703) funded by the Ministry of Knowledge Economy (MKE) and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B03932734), Republic of Korea. This study was also partially supported by an internal fund from the Korea Institute of Materials Science (KIMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong-Woong Kim or N. S. Reddy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayana, P.L., Kim, SW., Hong, JK. et al. Estimation of Transformation Temperatures in Ti–Ni–Pd Shape Memory Alloys. Met. Mater. Int. 24, 919–925 (2018). https://doi.org/10.1007/s12540-018-0109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0109-4

Keywords

Navigation