Skip to main content
Log in

Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning

  • Progress in High-Entropy Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Machine learning with artificial neural network (ANN)-based methods is a powerful tool for the prediction and exploitation of the subtle relationships between the composition and properties of materials. This work utilizes an ANN to predict the composition of high-entropy alloys (HEAs) based on non-equimolar AlCoCrFeMnNi in order to achieve the highest hardness in the system. A simulated annealing algorithm is integrated with the ANN to optimize the composition. A bootstrap approach is adopted to quantify the uncertainty of the prediction. Without any guidance, the design of new compositions of AlCoCrFeMnNi-based HEAs would be difficult by empirical methods. This work successfully demonstrates that, by applying the machine learning method, new compositions of AlCoCrFeMnNi-based HEAs can be obtained, exhibiting hardness values higher than the best literature value for the same alloy system. The correlations between the predicted composition, hardness, and microstructure are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  2. B. Cantor, I. Chang, P. Knight, and A. Vincent, Mater. Sci. Eng. A 375, 213 (2004).

    Article  Google Scholar 

  3. S. Gorsse, M.H. Nguyen, O.N. Senkov, and D.B. Miracle, Data Brief 21, 2664 (2018).

    Article  Google Scholar 

  4. D. Miracle and O. Senkov, Acta Mater. 122, 448 (2017).

    Article  Google Scholar 

  5. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).

    Article  Google Scholar 

  6. Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Acta Mater. 81, 428 (2014).

    Article  Google Scholar 

  7. O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward, J. Mater. Sci. 47, 4062 (2012).

    Article  Google Scholar 

  8. O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mater. Sci. Eng. A 565, 51 (2013).

    Article  Google Scholar 

  9. H. Daoud, A. Manzoni, N. Wanderka, and U. Glatzel, JOM 67, 2271 (2015).

    Article  Google Scholar 

  10. Q. Wang, Y. Ma, B. Jiang, X. Li, Y. Shi, C. Dong, and P.K. Liaw, Scr. Mater. 120, 85 (2016).

    Article  Google Scholar 

  11. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad 26, 273 (2002).

    Article  Google Scholar 

  12. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, and W.A. Oates, Calphad 26, 175 (2002).

    Article  Google Scholar 

  13. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Intermetallics 26, 44 (2012).

    Article  Google Scholar 

  14. C.J. Tong, M.R. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, and S.Y. Chang, Metall. Mater. Trans. A 36, 1263 (2005).

    Article  Google Scholar 

  15. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Mater. Sci. Eng. A 527, 6975 (2010).

    Article  Google Scholar 

  16. X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).

    Article  Google Scholar 

  17. M.G. Poletti and L. Battezzati, Acta Mater. 75, 297 (2014).

    Article  Google Scholar 

  18. M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Yeh, Mater. Res. Lett. 1, 207 (2013).

    Article  Google Scholar 

  19. H.L. Chen, H. Mao, and Q. Chen, Mater. Chem. Phys. 210, 279 (2018).

    Article  Google Scholar 

  20. T.-C. Software, TCS High Entropy Alloys Database v3 (2019). https://www.thermocalc.com/media/54070/tchea3_extended_info.pdf.

  21. C. LLC, PanHEA—Thermodynamic database for multi-component high entropy alloys (2019). http://www.computherm.com/index.php?route=product/product&path=59_83&product_id=59.

  22. B.D. Conduit, N.G. Jones, H.J. Stone, and G.J. Conduit, Mater. Des. 131, 358 (2017).

    Article  Google Scholar 

  23. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, NPJ Comput. Mater. 3, 54 (2017).

    Article  Google Scholar 

  24. B. Conduit, N.G. Jones, H.J. Stone, and G.J. Conduit, Scr. Mater. 146, 82 (2018).

    Article  Google Scholar 

  25. E. Menou, F. Tancret, I. Toda-Caraballo, G. Ramstein, P. Castany, E. Bertrand, N. Gautier, and P.E.J.R. Díaz-Del, Scr. Mater. 156, 120 (2018).

    Article  Google Scholar 

  26. N. Islam, W. Huang, and H.L. Zhuang, Comput. Mater. Sci. 150, 230 (2018).

    Article  Google Scholar 

  27. C. Wen, Y. Zhang, C. Wang, D. Xue, Y. Bai, S. Antonov, L. Dai, T. Lookman, and Y. Su, Acta Mater. 170, 109 (2019).

    Article  Google Scholar 

  28. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, J. Mach. Learn. Res. 12, 2825 (2011).

    MathSciNet  Google Scholar 

  29. A. Furmanchuk, A. Agrawal, and A. Choudhary, RSC Adv. 6, 95246 (2016).

    Article  Google Scholar 

  30. M. De Jong, W. Chen, R. Notestine, K. Persson, G. Ceder, A. Jain, M. Asta, and A. Gamst, Sci. Rep. 6, 34256 (2016).

    Article  Google Scholar 

  31. G. Papadopoulos, P.J. Edwards, and A.F. Murray, IEEE Trans. Neural Netw. 12, 1278 (2001).

    Article  Google Scholar 

  32. D. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D. Xue, and T. Lookman, Nat. Commun. 7, 11241 (2016).

    Article  Google Scholar 

  33. R.M. Pohan, B. Gwalani, J. Lee, T. Alam, J. Hwang, H.J. Ryu, R. Banerjee, and S.H. Hong, Mater. Chem. Phys. 210, 62 (2018).

    Article  Google Scholar 

  34. J. He, W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, and Z. Lu, Acta Mater. 62, 105 (2014).

    Article  Google Scholar 

  35. Y. Dong, Y. Lu, J. Kong, J. Zhang, and T. Li, J. Alloys Compd. 573, 96 (2013).

    Article  Google Scholar 

  36. T.T. Shun, L.Y. Chang, and M.H. Shiu, Mater. Charact. 70, 63 (2012).

    Article  Google Scholar 

  37. T.T. Zuo, R.B. Li, X.J. Ren, and Y. Zhang, J. Magn. Magn. Mater. 371, 60 (2014).

    Article  Google Scholar 

  38. Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, J. Alloys Compd. 488, 57 (2009).

    Article  Google Scholar 

  39. Z. Wang, M. Gao, S. Ma, H. Yang, Z. Wang, M. Ziomek-Moroz, and J. Qiao, Mater. Sci. Eng. A 645, 163 (2015).

    Article  Google Scholar 

  40. C.M. Lin and H.L. Tsai, Intermetallics 19, 288 (2011).

    Article  Google Scholar 

  41. S. Ma and Y. Zhang, Mater. Sci. Eng. A 532, 480 (2012).

    Article  Google Scholar 

  42. C. Li, J. Li, M. Zhao, and Q. Jiang, J. Alloys Compd. 475, 752 (2009).

    Article  Google Scholar 

  43. N. Stepanov, D. Shaysultanov, G. Salishchev, M. Tikhonovsky, E. Oleynik, A. Tortika, and O. Senkov, J. Alloys Compd. 628, 170 (2015).

    Article  Google Scholar 

  44. S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, and J.W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).

    Article  Google Scholar 

  45. B.C. Wilson, J.A. Hickman, and G.E. Fuchs, JOM 55, 35 (2003).

    Article  Google Scholar 

  46. A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).

    Article  Google Scholar 

  47. A. Ardell, Metall. Trans. A 16, 2131 (1985).

    Article  Google Scholar 

  48. Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw, and T. Egami, JOM 65, 1848 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the Ministry of Science and Technology (MOST) in Taiwan (Projects MOST106-2923-E-007 -002 -MY2, MOST107-2218-E-007 -012 and MOST107-2221-E-492 -011 -MY3), and the “High Entropy Materials Center” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) and from the Project MOST 107-3017-F-007-003 by MOST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An-Chou Yeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YJ., Jui, CY., Lee, WJ. et al. Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning. JOM 71, 3433–3442 (2019). https://doi.org/10.1007/s11837-019-03704-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03704-4

Navigation