Skip to main content
Log in

Microstructural, Mechanical, and Fracture Characterization of Metal Matrix Composite Manufactured by Accumulative Roll Bonding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Accumulative roll bonding is a severe plastic-forming process proposed to manufacture ceramic particle-reinforced multilayered metal matrix composites. In this work, low-cost composite multilayered laminate was produced by roll bonding commercially pure aluminum 1100 with 5% in volume of reinforcing microscale silicon carbide particles. Microstructural features, hardness, tensile properties in the presence of stress concentrators, and wear resistance were assessed. Fracture surface inspection was carried out to determine operating failure mechanisms. Hardness was significantly enhanced, whereas tensile properties only moderately improved by ceramic particles incorporation. The main reasons were some degree of recrystallization, work-hardening relief due to periodic annealing, minimum grain refinement, and somewhat agglomerated carbide particles. Though tensile properties increments were not much attractive, exceptional increase in wear performance was achieved due to the addition of particulate carbon-rich ceramic phase, which acted as solid lubricant mitigating abrasion, adhesion, and delamination wear mechanisms. The manufactured composite laminate can be worthwhile in applications where low cost, notch insensitivity, and superior wear and weather resistances are design requirements, as outdoor decks and patios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Q. Liu, F. Qi, Q. Wang, H. Ding, K. Chu, Y. Liu and C. Li, The Influence of Particles Size and its Distribution on the Degree of Stress Concentration in Particulate Reinforced Metal Matrix Composites, Mater. Sci. Eng., A, 2018, 731, p 351–359. https://doi.org/10.1016/j.msea.2018.06.067

    Article  CAS  Google Scholar 

  2. A.I. Khadir and A. Fathy, Enhanced Strength and Ductility of Al-SiC Nanocomposites Synthesized by Accumulative Roll, J. Mater. Res. Technol., 2019, 9, p 478–489. https://doi.org/10.1016/j.jmrt.2019.10.077

    Article  CAS  Google Scholar 

  3. P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain and P. Gupta, Advance Research Progresses in Aluminium Matrix Composites: Manufacturing & Applications, J. Mater. Res. Technol., 2019, 9, p 4924–4939. https://doi.org/10.1016/j.jmrt.2019.06.028

    Article  CAS  Google Scholar 

  4. M. Alizadeh and M.H. Paydar, Fabrication of Nanostructure Al/SiCP Composite by Accumulative Roll-Bonding (ARB) Process, J. Alloys Compd., 2010, 492, p 231–235. https://doi.org/10.1016/j.jallcom.2009.12.026

    Article  CAS  Google Scholar 

  5. M. Alizadeh and M.H. Paydar, Fabrication of Al/SiCP Composite Strips by Repeated Roll-Bonding (RRB) Process, J. Alloys Compd., 2009, 477, p 811–816. https://doi.org/10.1016/j.jallcom.2008.10.151

    Article  CAS  Google Scholar 

  6. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong, Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scripta Mater., 1998, 39, p 1221–1227. https://doi.org/10.1016/S1359-6462(98)00302-9

    Article  CAS  Google Scholar 

  7. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Novel Ultra-High Straining Process for Bulk Materials-Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47, p 579–583. https://doi.org/10.1016/S1359-6454(98)00365-6

    Article  CAS  Google Scholar 

  8. M. Ruppert, W. Bohm, H. Nguyen, H.W. Hoppel, M. Merklein and M. Goken, Influence of Upscaling Accumulative Roll Bonding on the Homogeneity and Mechanical Properties of AA1050A, J. Mater. Sci., 2013, 48, p 8377–8385. https://doi.org/10.1007/s10853-013-7648-3

    Article  CAS  Google Scholar 

  9. M. Chen, C. Hsieh and W. Wu, Microstructural Characterization of Al/Mg Alloy Interdiffusion Mechanism During Accumulative Roll Bonding, Met. Mater. Int., 2007, 13, p 201–205. https://doi.org/10.1007/BF03027805

    Article  CAS  Google Scholar 

  10. B.L. Li, N. Tsuji and N. Kamikawa, Microstructure Homogeneity in Various Metallic Materials Heavily Deformed by Accumulative Roll-Bonding, Mater. Sci. Eng., A, 2006, 423, p 331–342. https://doi.org/10.1016/j.msea.2006.02.028

    Article  CAS  Google Scholar 

  11. N. Tsuji, Y. Saito, S. Lee and Y. Minamino, ARB (Accumulative Roll-Bonding) and Other New Techniques to Produce Bulk Ultrafine Grained Materials, Adv. Eng. Mater., 2003, 5, p 338–344. https://doi.org/10.1002/adem.200310077

    Article  CAS  Google Scholar 

  12. R. Jamaati and M.R. Toroghinejad, Investigation of the Parameters of the Cold Roll Bonding (CRB) Process, Mater. Sci. Eng., A, 2010, 527, p 2320–2326. https://doi.org/10.1016/j.msea.2009.11.069

    Article  CAS  Google Scholar 

  13. M. Alizadeh, M.H. Paydar, D. Terada and N. Tsuji, Effect of SiC Particles on the Microstructure Evolution and Mechanical Properties of Aluminum During ARB Process, Mater. Sci. Eng., A, 2012, 540, p 13–23. https://doi.org/10.1016/j.msea.2011.12.026

    Article  CAS  Google Scholar 

  14. A. Wagih, A. Fathy, D. Ibrahim, O. Elkady and M. Hassan, Experimental Investigation on Strengthening Mechanisms in Al-SiC Nanocomposites and 3D FE Simulation of Vickers Indentation, J. Alloys Compd., 2018, 752, p 137–147. https://doi.org/10.1016/j.jallcom.2018.04.167

    Article  CAS  Google Scholar 

  15. A. Fathy, D. Ibrahim, O. Elkady and M. Hassan, Evaluation of Mechanical Properties of 1050-Al Reinforced with SiC Particles via Accumulative Roll Bonding Process, J. Compos. Mater., 2019, 53, p 209–218. https://doi.org/10.1177/0021998318781462

    Article  CAS  Google Scholar 

  16. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad and B. Niroumand, Effect of Particle Size on Microstructure and Mechanical Properties of Composites Produced by ARB Process, Mater. Sci. Eng., A, 2012, 528, p 2143–2148. https://doi.org/10.1016/j.msea.2010.11.056

    Article  CAS  Google Scholar 

  17. A. Melaibari, A. Fathy, M. Mansouri and M.A. Eltaher, Experimental and Numerical Investigation on Strengthening Mechanisms of Nanostructured Al-SiC Composites, J. Alloys Compd., 2019, 774, p 1123–1132. https://doi.org/10.1016/j.jallcom.2018.10.007

    Article  CAS  Google Scholar 

  18. S. Amirkhanlou, M. Rahimian, M. Ketabchi, N. Parvin, P. Yaghinali and F. Carreño, Strengthening Mechanisms in Nanostructured Al/SiCp Composite Manufactured by Accumulative Press Bonding, Metall. Mater. Trans. A, 2016, 47, p 5136–5145. https://doi.org/10.1007/s11661-016-3666-5

    Article  CAS  Google Scholar 

  19. S. Amirkhanlou, R. Jamaati, B. Niroumand and M.R. Toroghinejad, Fabrication and Characterization of Al/SiCp Composites by CAR Process, Mater. Sci. Eng., A, 2011, 528, p 4462–4467. https://doi.org/10.1016/j.msea.2011.02.037

    Article  CAS  Google Scholar 

  20. D.M. Shinde, P. Sahoo and J.P. Davim, Tribological Characterization of Particulate-Reinforced Aluminum Metal Matrix Nanocomposites: A Review, Adv. Compos. Lett., 2020, 29, p 1–28. https://doi.org/10.1177/2633366X20921403

    Article  Google Scholar 

  21. S.M. Ghalehbandi, M. Malaki and M. Gupta, Accumulative Roll Bonding—A Review, Appl. Sci., 2019, 9, p 3627–3659. https://doi.org/10.3390/app9173627

    Article  CAS  Google Scholar 

  22. E. Darmiani, I. Danaee, M.A. Golozar, M.R. Toroghinejad, A. Ashrafi and A. Ahmadi, Reciprocating Wear Resistance of Al-SiC Nano-composite Fabricated by Accumulative Roll Bonding Process, Mater. Des., 2013, 50, p 497–502. https://doi.org/10.1016/j.matdes.2013.03.047

    Article  CAS  Google Scholar 

  23. W.S. Hassanein, A. Sadoun and A. Abu-Oqail, Effect of SiC Addition on the Mechanical Properties and Wear Behavior of Al-SiC Nanocomposites Produced by Accumulative Roll Bonding, Mater. Res. Express, 2020, 7, p 075006. https://doi.org/10.1088/2053-1591/ab9d53

    Article  CAS  Google Scholar 

  24. M. Gee, A.J. Gant, I.M. Hutchings, Y. Kusano, K. Schiffman, K. Van Acker, S. Poulat and G. Plint, Results from an Interlaboratory Exercise to Validate the Micro-scale Abrasion Test, Wear, 2005, 259, p 27–35. https://doi.org/10.1016/j.wear.2005.02.092

    Article  CAS  Google Scholar 

  25. J.D.C.P.T. Oliveira and A.F. Padilha, Microstructural Characterization of AA1100, AA1050 and AA1070 Commercial Aluminums, and AA1199 Super Pure Aluminum, Rev. Esc. Minas, 2009, 62, p 373–378. https://doi.org/10.1590/S0370-44672009000300017

    Article  Google Scholar 

  26. Santos Filho, O.C. Microestrutural and Mechanical Properties Characterization of AA1100 and AA5052 Alloys Processed by Accumulated Roll Bonding—ARB. Master's Dissertation. Politechnic School of Metallurgy and Materials Engineering. 2009. 129p. Doi: https://doi.org/10.11606/D.3.2009.tde-29062009-103030.

  27. S. Kaneko, K. Fukuda, H. Utsunomiya, T. Sakai, Y. Saito and N. Furushiro, Ultra Grain Refinement of Aluminium 1100 by ARB with Cross Rolling, Mater. Sci. Forum, 2003, 426, p 2649–2654. https://doi.org/10.4028/www.scientific.net/MSF.426-432.2649

    Article  Google Scholar 

  28. C. Kwan, Z. Wang and S.B. Kang, Mechanical Behavior and Microstructural Evolution upon Annealing of the Accumulative Roll-Bonding (ARB) Processed Al Alloy 1100, Mater. Sci. Eng., A, 2008, 480, p 148–159. https://doi.org/10.1016/j.msea.2007.07.022

    Article  CAS  Google Scholar 

  29. E. Bagherpour, M. Reihanian and H. Miyamoto, Tailoring Particle Distribution Non-uniformity and Grain Refinement in Nanostructured Metal Matrix Composites Fabricated by Severe Plastic Deformation (SPD): A Correlation with Flow Stress, J. Mater. Sci., 2017, 52, p 3436–3446. https://doi.org/10.1007/s10853-016-0632-y

    Article  CAS  Google Scholar 

  30. A.F. Meselhy and M.M. Reda, Investigation of Mechanical Properties of Nanostructured Al-SiC Composite Manufactured by Accumulative Roll Bonding, J. Compos. Mater., 2019, 53, p 3951–3961. https://doi.org/10.1177/0021998319851831

    Article  CAS  Google Scholar 

  31. K. Adam, D. Zöllner and D.P. Field, 3D Microstructural Evolution of Primary Recrystallization and Grain Growth in Cold Rolled Single-Phase Aluminum Alloy, Modell. Simul. Mater. Sci. Eng., 2018, 26, p 16p. https://doi.org/10.1088/1361-651X/aaa146

    Article  Google Scholar 

  32. S. Kondo, T. Mitsuma, N. Shibata and Y. Ikuhara, Direct Observation of Individual Dislocation Interaction Processes with Grain Boundaries, Sci. Adv., 2016, 2, p 11. https://doi.org/10.1126/sciadv.1501926

    Article  CAS  Google Scholar 

  33. M. Shamanian, M. Mohammadnezhad, H. Asgari and J. Szpunar, Fabrication and Characterization of Al-Al2O3-ZrC Composite Produced by Accumulative Roll Bonding (ARB) Process, J. Alloys Compd., 2015, 618, p 19–26. https://doi.org/10.1016/j.jallcom.2014.08.136

    Article  CAS  Google Scholar 

  34. V.M. Heydari and P. Farhadipour, Fabrication of AA1060/Al2O3 Composites by Warm Accumulative Roll Bonding Process and Investigation of Its Mechanical Properties and Microstructural Evolution, Int. J. Adv. Des. Manuf. Technol., 2017, 10, p 91–98.

    Google Scholar 

  35. R. Yousefian, E. Emadoddin and S. Baharnezhad, Manufacturing of the Aluminum Metal-Matrix Composite Reinforced with Micro-and Nanoparticles of TIO2 Through Accumulative Roll Bonding Process (ARB), Rev. Adv. Mater. Sci., 2018, 55, p 1–11. https://doi.org/10.1515/rams-2018-0022

    Article  CAS  Google Scholar 

  36. X. Chen, Y. Peng, S. Peng, S. Yao, C. Chen and P. Xu, Flow and Fracture Behavior of Aluminum Alloy 6082–T6 at Different Tensile Strain Rates and Triaxialities, PLoS ONE, 2017, 12, p e0181983. https://doi.org/10.1371/journal.pone.0181983

    Article  CAS  Google Scholar 

  37. P. Henn, M. Liewald and M. Sindle, Investigation on Local Ductility of 6xxx-Aluminium Sheet Alloys, J. Phys: Conf. Ser., 2017, 896(012002), p 9p. https://doi.org/10.1088/1742-6596/896/1/011001

    Article  Google Scholar 

  38. F. Bron, J. Besson, A. Pineau, J.-C. Ehrstrom, Ductile Rupture of 2024 Aluminum Thin Sheets—Experimental Study of Damage Growth and Crack Initiation, in Proceedings of the 14th Biennial Conference on Fracture - ECF 14, A. Neimitz Ed. Cracow, p. 8. ISBN: 8388906046.

  39. R. Qu, P. Zhang and Z. Zhang, Notch Effect of Materials: Strengthening or Weakening?, J. Mater. Sci. Technol., 2014, 30, p 599–608. https://doi.org/10.1016/j.jmst.2014.04.014

    Article  CAS  Google Scholar 

  40. C. Cepeda-Jiménez, M. Pozuelo and J. García-Infanta, Interface Effects on the Fracture Mechanism of a High-Toughness Aluminum-Composite Laminate, Metall. Mater. Trans. A, 2009, 40, p 69–79. https://doi.org/10.1007/s11661-008-9679-y

    Article  CAS  Google Scholar 

  41. Z. Chen and Q. Chen, Interface Shear Actions and Mechanical Properties of Nanostructured Dissimilar Al Alloy Laminated Metal Composites, J. Nanomater., 2015, 2015, p 14p. https://doi.org/10.1155/2015/612029

    Article  CAS  Google Scholar 

  42. C.X. Huang, Y.F. Wang, X.L. Ma, S. Yin, H.W. Höppel, M. Göken, X.L. Wu, H.J. Gao and Y.T. Zhu, Interface Affected Zone for Optimal Strength and Ductility in Heterogeneous Laminate, Mater. Today, 2018, 21, p 713–719. https://doi.org/10.1016/j.mattod.2018.03.006

    Article  CAS  Google Scholar 

  43. C. Sobie, M.G. McPhie, L. Capolungo and M. Cherkaoui, The Effect of Interfaces on the Mechanical Behaviour of Multilayered Metallic Laminates, Modell. Simul. Mater. Sci. Eng., 2014, 22, p 14p. https://doi.org/10.1088/0965-0393/22/4/045007

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (Pereira G.S.) acknowledges the National Council for Scientific and Technological Development (CNPq-Brazil) for scholarship (Process: 160283/2014-0). This study was partly financed by Coordination for Improvement of Higher Education Staff (CAPES-Brazil) through Financial Support Code 001. The collaboration provided by the Tribology and Composites Laboratory at the Sao Carlos Engineering School (Brazil) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

Pereira G.S. carried out conceptualization, methodology, validation, investigation, draft writing, and review. Da Silva E.P. contributed to validation and review. Requena G.C. carried out validation and review, Avila J.A. contributed to draft writing and review. Tarpani J.R. contributed to conceptualization, methodology, validation, investigation, draft writing, review and editing, visualization, and supervision.

Corresponding author

Correspondence to J. R. Tarpani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, G.S., Da Silva, E.P., Requena, G.C. et al. Microstructural, Mechanical, and Fracture Characterization of Metal Matrix Composite Manufactured by Accumulative Roll Bonding. J. of Materi Eng and Perform 30, 2645–2660 (2021). https://doi.org/10.1007/s11665-021-05619-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05619-1

Keywords

Navigation