Skip to main content
Log in

Interface Effects on the Fracture Mechanism of a High-Toughness Aluminum-Composite Laminate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and the mechanical properties of a multilayer composite laminate based on aluminum 7075 and 2024 alloys produced by hot roll bonding were examined. The composite laminate has been tested at room temperature under Charpy-impact tests, three-point bend tests, and shear tests on the interfaces. The toughness of the post-rolling tempered and T6-treated composite laminate, measured by impact- absorbed energy in the crack-arrester orientation, was more than 20 times higher than that of the monolithic Al 7075 alloy and 7 times higher than that of Al 2024 alloy. The outstanding toughness increase of the composite laminate in the post-rolling tempered and T6-treated condition is mainly due to the mechanism of “interface predelamination.” By this fracture mechanism, the interfaces are debonded before the main crack reaches them, warranting delamination in all interfaces. Therefore, delamination and crack renucleation in every layer are responsible for the improvement in toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  2. Oxford Inca is a trademark of Oxford Instruments, Oxfordshire, UK.

  3. Servosis is a trademark of Servosis S.A., Pinto, Spain.

References

  1. J.C. Williams, E.A. Starke Jr.: Acta Mater., 2003, vol. 51, pp. 5775–99

    Article  CAS  Google Scholar 

  2. J.A. Nock: in Aluminum, Properties and Physical Metallurgy, J.E. Hatch, ed., ASM, Metals Park, OH, 1984, pp. 351–78

  3. E.A. Starke Jr., J.T. Staley: Prog. Aerospace Sci., 1996, vol. 32 pp. 131–72

    Article  ADS  Google Scholar 

  4. T. Warner: Mater. Sci. Forum, 2006, vols. 519–521, pp. 1271–78

    Google Scholar 

  5. H.T. Lee, G.H. Shaue: Mater. Sci. Eng. A, 1999, vol. 268, pp. 154–64

    Article  Google Scholar 

  6. S. Ozden, R. Ekici, F. Nair: Compos. Part A, 2007, vol. 38, pp. 484–94

    Article  CAS  Google Scholar 

  7. J. Wadsworth, D.R. Lesuer: Mater. Charact., 2000, vol. 45, pp. 289–313

    Article  CAS  Google Scholar 

  8. T.M. Osman, J.J. Lewandowski, D.R. Lesuer: Mater. Sci. Eng. A, 1997, vol. 229, pp. 1–9

    Article  Google Scholar 

  9. R. Alderliesten, G. Campoli, R. Benedictus: Compos. Sci. Technol., 2007, vol. 67, pp. 2545–55

    Article  CAS  Google Scholar 

  10. G. Caprino, V. Lopresto, P. Iaccarino: Compos. Part. A, 2007, vol. 38, pp. 290–300

    Article  CAS  Google Scholar 

  11. T.M. Osman, P.M. Singh, J.J. Lewandowski: Scripta Metall. Mater., 1994, vol. 31, pp. 607–12

    Article  CAS  Google Scholar 

  12. H.A. Hassan, J.J. Lewandowski, M.H. Abd El-Latif: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2291–2303

    Article  CAS  ADS  Google Scholar 

  13. L.Y. Ellis, J.J. Lewandowski: Mater. Sci. Eng. A, 1994, vol. 183, pp. 59–67

    Article  CAS  Google Scholar 

  14. H.A. Hassan, J.J. Lewandowski, M.H. Abd El-Latif: Metall. Mater.Trans. A, 2004, vol. 35A, pp. 45–52

    Article  CAS  Google Scholar 

  15. M. Pozuelo, F. Carreño, C.M. Cepeda-Jimenez, O.A. Ruano: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 666–71.

    Article  ADS  CAS  Google Scholar 

  16. M. Pozuelo, F. Carreño, O.A. Ruano: Mater. Sci. Forum, 2003, vol. 426, pp. 883–88

    Article  Google Scholar 

  17. D.R. Lesuer, C.K. Syn, O.D. Sherby, J. Wadsworth, J.J. Lewandowski, W.H. Hunt Jr.: Int. Mater. Rev., 1996, vol. 41 (5), pp. 169–97

    CAS  Google Scholar 

  18. D.W. Kum, T. Oyama, O.A. Ruano, O.D. Sherby: Metall. Trans. A, 1986, vol. 17A, pp. 1517–21

    ADS  CAS  Google Scholar 

  19. M. Pozuelo, F. Carreño, O.A. Ruano: Compos. Sci. Technol., 2006, vol. 66, pp. 2671–76

    Article  CAS  Google Scholar 

  20. D.W. Kum, T. Oyama, J. Wadsworth, O.D. Sherby: J. Mech. Phys., 1983, vol. 31, pp. 173–86

    Article  ADS  Google Scholar 

  21. H. Kaçar, E. Atik, C. Meriç: J. Mater. Process. Technol., 2003, vol. 142, pp. 762–66

    Article  CAS  Google Scholar 

  22. N. Kamikawa, N. Tsuji, X. Huang, N. Hansen: Acta Mater., 2006, vol. 54, pp. 3055–66

    Article  CAS  Google Scholar 

  23. G.E. Dieter: Mechanical Metallurgy, McGraw-Hill, London, United Kingdom, 1988, pp. 12–15

    Google Scholar 

  24. F. Viana, A.M.P. Pinto, H.M.C. Santos, A.B. Lopes: J. Mater. Process. Technol., 1999, vols. 92–93, pp. 54–59

    Article  Google Scholar 

  25. C. Genevois, A. Deschamps, A. Denquin, B. Doisneau-Cottignies: Acta Mater., 2005, vol. 53, pp. 2447–58

    Article  CAS  Google Scholar 

  26. C. Badini, F. Marino, E. Verné: Mater. Sci. Eng. A, 1995, vol. 191, pp. 185–91

    Article  Google Scholar 

  27. L.F. Mondolfo: Aluminium Alloys: Structure and Properties, Butterworth and Co., Boston, MA, 1976, pp. 695–99

    Google Scholar 

  28. Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, Y.T. Zhu: Acta Mater., 2004, vol. 52, pp. 4589–99

    Article  CAS  Google Scholar 

  29. D.R. Bloyer, K.T. Venkateswara Rao, R.O. Ritchie: Mater. Sci. Eng. A, 1996, vol. 216, pp. 80–90

    Article  Google Scholar 

  30. D.R. Bloyer, K.T. Venkateswara Rao, R.O. Ritchie: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2483–96

    Article  CAS  Google Scholar 

  31. T.M. Osman, H.A. Hassan, J.J. Lewandowski: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1993–2206

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CICYT (Project No. MAT2003-01172) for financial support. Two of the authors (CMCJ and JMGI) thank the Spanish Ministry of Education and Science for a Juan de la Cierva contract and a FPI fellowship, respectively. The authors also thank L. del Real-Alarcón for the welding work, F.F. González-Rodríguez for assistance during hot rolling, and J. Chao-Hermida for assistance with the Charpy-impact test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.M. Cepeda-Jiménez.

Additional information

Manuscript submitted January 10, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cepeda-Jiménez, C., Pozuelo, M., García-Infanta, J. et al. Interface Effects on the Fracture Mechanism of a High-Toughness Aluminum-Composite Laminate. Metall Mater Trans A 40, 69–79 (2009). https://doi.org/10.1007/s11661-008-9679-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9679-y

Keywords

Navigation