Skip to main content
Log in

Heterogeneous Microstructure of Low-Carbon Microalloyed Steel and Mechanical Properties

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure plays a major role in the performance of metallic materials, which can be tailored through the composition and/or processing technique. In this study, a heterogeneous microstructure was developed for low-carbon microalloyed API X65 steel, the most commonly used pipeline steel for oil and gas transportation, using a heat treatment process. The heat treatment process involved intercritical heating of the steel followed by high-temperature isotheral cooling, allowing for phase transformation, as well as alloying element partitioning. The heat treatment transformed the banded ferrite–pearlite microstructure of rolled steel to a quasi-polygonal ferrite microstructure, with the sporadic presence of austenite at the grain boundaries. The quasi-polygonal ferrite was distributed in a heterogeneous form with a fine-grain shell surrounding the coarse-grained core. The heterogeneity in the microstructure, despite being single phase, led to a significant improvement in the tensile yield strength, ultimate tensile strength, ductility and toughness of the steel, with a marginal reduction in microhardness values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X. Wu and Y. Zhu, Heterogeneous Materials: A New Class of Materials with Unprecedented Mechanical Properties, Mater. Res. Lett., 2017, 5(8), p 527–532

    Article  CAS  Google Scholar 

  2. X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, and Y.T. Zhu, Heterogeneous Lamella Structure unites Ultrafine-Grain Strength with Coarse-Grain Ductility, Proc. Natl. Acad. Sci. USA, 2015, 112, p 14501–14505

    Article  CAS  Google Scholar 

  3. R. Zheng, G. Li, Z. Zhang, Y. Zhang, S. Yue, X. Chen, K. Ameyama, and C. Ma, Manipulating the Powder Size to Achieve Enhanced Strength and Ductility in Harmonic Structured Al Alloy, Mater. Res. Let., 2019, 7(6), p 217–224

    Article  CAS  Google Scholar 

  4. H. Zhou, C.X. Huang, X.C. Sha, L.R. Xiao, X.L. Ma, H.W. Höppel, M. Göken, X.L. Wu, K. Ameyama, X.D. Han, and Y.T. Zhu, In-Situ Observation of Dislocation Dynamics Near Heterostructured Interfaces, Mater. Res. Lett., 2019, 7, p 376–382

    Article  CAS  Google Scholar 

  5. X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, and Y.T. Zhu, Combining Gradient Structure and TRIP Effect to Produce Austenite Stainless Steel with High Strength and Ductility, Acta Mater., 2016, 112, p 337–346

    Article  CAS  Google Scholar 

  6. B. Raeisinia, C.W. Sinclair, W.J. Poole, and C.N. Tome, On the Impact of Grain Size Distribution on the Plastic Behaviour of Polycrystalline Metals, Model. Simul. Mater. Sci. Eng., 2008, 16, p Art. No. 025001

    Article  Google Scholar 

  7. S.F. Hassan, O. Siddiqui, M.F. Ahmed, and A.I. Al Nawwah, Development of Gradient Concentrated Single Phase Fine Mg-Zn Particles and Effect on Structure and Mechanical Properties, J. Eng. Mater. Technol., 2018, 141(2), p Art. no. 021007

    Google Scholar 

  8. Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419(2002), p 912–915

    Article  CAS  Google Scholar 

  9. X.L. Ma, C.X. Huang, J. Moering, M. Ruppert, H.W. Hoppel, M. Goken, J. Narayan, and Y.T. Zhu, Mechanical Properties in Copper/Bronze Laminates: Role of Interfaces, Acta Mater., 2016, 116, p 43–52

    Article  CAS  Google Scholar 

  10. S. Nikkhah, H. Mirzadeh, and M. Zamani, Improved Mechanical Properties of Mild Steel via Combination of Deformation, Intercritical Annealing, and Quench Aging, Mater. Sci. Eng., A, 2019, 756, p 268–271

    Article  CAS  Google Scholar 

  11. E. El-Danaf, M. Baig, A. Almajid, W. Alshalfan, M. Al-Mojil, and S. Al-Shahrani, Mechanical, Microstructure and Texture Characterization of API, X65 Steel, Mater. Des., 2013, 47, p 529–538

    Article  CAS  Google Scholar 

  12. J.A. Ronevich, B.P. Somerday, and C.W. San Marchi, Effects of Microstructure Banding on Hydrogen Assisted Fatigue Crack Growth in X65 Pipeline Steels, Int. J. Fatigue, 2016, 82, p 497–504

    Article  CAS  Google Scholar 

  13. M.C. Zhao, K. Yang, F.R. Xiao, and Y.Y. Shan, Continuous Cooling Transformation of Undeformed and Deformed Low Carbon Pipeline Steel, Mater. Sci. Eng., A, 2003, 355, p 126–136

    Article  Google Scholar 

  14. A.B. Cota, F.L.G. Oliveira, A.L.R. Barbosa, C.A.M. Lacerda, and F.G.S. Araújo, Microstructure and Mechanical Properties of a Microalloyed Steel After Thermal Treatments, Mater. Res., 2003, 6(2), p 117–121

    Article  CAS  Google Scholar 

  15. L. Zhongqiua, F. Jiana, Z. Yonga, and Y. Zexi, Influence of Quenching On-line on Properties of X70 Steel for Sour Service Seamless Pipe, Energy Procedia, 2012, 16, p 444–450

    Article  Google Scholar 

  16. J. Xu, R.D.K. Misra, B. Guo, V.S.A. Challa, and L. Zheng, High Strength (560 MPa) Quenched and Tempered Pipeline Steels, Mater. Sci. Technol., 2013, 29(10), p 1241–1246

    Article  CAS  Google Scholar 

  17. P.A. Wycliffe, G.R. Purdy, and J.D. Embury, Austenite Growth in the Intercritical Annealing of Ternary and Quaternary Dual-Phase Steels, Fundamentals of Dual-Phase Steels, R.A. Kot and B.L. Bramfitt, Ed., TMS-AIME, Warrendale, PA, 1981, p 59–83

    Google Scholar 

  18. J.M. Rigsbee, Inhibition of Martensite Transformation in Small Austenite Particles in Low Alloy Steels, Proceedings of International Conference on Martensitic Transformations, MIT, Cambridge, MA, 1979, p 381–385

    Google Scholar 

  19. G. Krauss and S.W. Thompson, Ferritic Microstructures in Continuously Cooled Low- and Ultralow-Carbon Steels, ISIJ Int., 1995, 35, p 937–945

    Article  CAS  Google Scholar 

  20. M.A. Smirnov, I.Y. Pyshmintsev, and A.N. Boryakova, Classification of Low-Carbon Pipe Steel Microstructure, Metallurgist, 2010, 54(7–8), p 444–454

    Article  CAS  Google Scholar 

  21. T.B. Massalski, Phase Transformations, Metals Park, Ohio, ASM, 1970, p 433

    Google Scholar 

  22. B.L. Bramfiti and J.G. Speer, A Perspective on the Morphology of Bainite, Metall. Trans. A, 1990, 21, p 818–829

    Google Scholar 

  23. S. Yan, X. Liu, T. Liang, J. Chen, and Y. Zhao, Effect of Micro-Alloying Elements on Microstructure and Mechanical Properties in C-Mn–Si Quenching and Partitioning (Q&P) Steels, Steel Res. Int., 2019, 90, p Art. no. 1800257

    Article  Google Scholar 

  24. C. Suryanarayana and M.G. Norton, X-Ray Diffraction: A Practical Approach, Springer, US, 1998

    Book  Google Scholar 

  25. NACE Standard Test Method TM0175, Sulfide Stress Cracking Resistant Metallic Materials for Oilfield Equipment, NACE, Huston, USA, (2009).

  26. Q.H. Han, A. Asgari, P.D. Hodgson, and N. Stanford, Strain Partitioning in Dual-Phase Steels Containing Tempered Martensite, Mater. Sci. Eng., A, 2014, 611, p 90–99

    Article  CAS  Google Scholar 

  27. Z.H. Cong, N. Jia, X. Sun, Y. Ren, J. Almer, and Y.D. Wang, Stress and Strain Partitioning of Ferrite and Martensite During Deformation, Metall. Mater. Trans. A, 2009, 40, p 1383–1387

    Article  Google Scholar 

  28. H.F. Lan, L.X. Du, and R.D.K. Misra, Effect of Microstructural Constituents on Strength-Toughness Combination in a Low Carbon Bainitic Steel, Mater. Sci. Eng., A, 2014, 611, p 194–200

    Article  CAS  Google Scholar 

  29. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda, Micro-fracture Behaviour Induced by M-A Constituent (Island Martensite) in Simulated Welding Heat Affected Zone of HT80 High Strength Low Alloyed Steel, Acta Metall., 1984, 32, p 1779–1788

    Article  CAS  Google Scholar 

  30. B. Verhaeghe, F. Louchet, Y. Brechet, and J.P. Massoud, Damage and Rupture Mechanisms in an Austenoferritic Duplex steel, Acta Mater., 1997, 45(5), p 1811–1819

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support provided by Department of Mechanical Engineering of King Fahd University of Petroleum & Minerals for supporting this work through Graduate Research Course MSE 610.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fida Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S.F., Al-Wadei, H. Heterogeneous Microstructure of Low-Carbon Microalloyed Steel and Mechanical Properties. J. of Materi Eng and Perform 29, 7045–7051 (2020). https://doi.org/10.1007/s11665-020-05217-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05217-7

Keywords

Navigation