Skip to main content
Log in

Stress and Strain Partitioning of Ferrite and Martensite during Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The direct measurement of the stress or strain partitioning during deformation in the materials, consisting of two phases with the same crystallographic structure and different microstructures, is still difficult so far. This is due to the fact that no effective characterization tool is available with the ability to distinguish the local strain and stress at microscale level. In this article, we studied the micromechanical behavior of ferrite/martensite dual-phase (DP) alloys using the in-situ high-energy X-ray diffraction (HEXRD) technique. We established a new method to separate the stress and strain in the ferrite and martensite during loading. Although the ferrite and martensite exhibit the same crystal structure with similar lattice parameters, the dependence of (200) lattice strains on the applied stress is obviously different for each phase. A visco-plastic self-consistent (VPSC) model, which can simulate the micromechanical behavior of two-phase materials, was used to construct the respective constitutive laws for both phases from the experimental lattice strains and to fit the macro-stress-strain curve. The material parameters for each phase extracted from our experiments and simulations could be used for designing other DP alloys and optimizing some complex industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.M. Al-Abbasi and J.A. Nemes: Comput. Mater. Sci., 2007, vol. 39, pp. 402–15.

    Article  CAS  Google Scholar 

  2. A.P. Modi: Tribol. Int., 2007, vol. 40, pp. 490–97.

    Article  CAS  Google Scholar 

  3. J. Adamczyk and A. Grajcar: J. Mater. Process. Technol., 2005, vols. 162–163, pp. 267–74.

    Article  Google Scholar 

  4. F.M. Al-Abbasi and J.A. Nemes: Int. J. Mech. Sci., 2003, vol. 45, pp. 1449–65.

    Article  MATH  Google Scholar 

  5. Z. Jiang, Z. Guan, and J. Lian: J. Mater. Sci., 1993, vol. 28, pp. 1814–18.

    Article  ADS  CAS  Google Scholar 

  6. A. Bag, K.K. Ray, and E.S. Dwarakadasa: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1193–202.

    Article  CAS  Google Scholar 

  7. Y. Tomita: J. Mater. Sci., 1990, vol. 25, pp. 5179–84.

    Article  ADS  CAS  Google Scholar 

  8. Y. Motoyashiki, A. Brückner-Foit, and A. Sugeta: Eng. Fract. Mech., 2008, vol. 75, pp. 768–78.

    Article  Google Scholar 

  9. N.C. Goel, S. Sangal, and K. Tangri: Metall. Trans. A, 1985, vol. 16A, pp. 2013–21.

    ADS  CAS  Google Scholar 

  10. P.R. Rios, J.R.C. Guimaraes, and K.K. Chawia: Scripta Metall., 1981, vol. 15, pp. 899–904.

    Article  CAS  Google Scholar 

  11. E. Jimenez-Melero, N.H. van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Scripta Mater., 2007, vol. 56, pp. 421–24.

    Article  CAS  Google Scholar 

  12. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439–47.

    Article  Google Scholar 

  13. M.R. Berrahmoune, S. Berveiller, K. Inal, A. Moulin, and E. Patoor: Mater. Sci. Eng. A, 2004, vol. 378, pp. 304–07.

    Article  Google Scholar 

  14. N. Jia, Y.D. Wang, and R. Lin Peng: J. Phys. Condens. Matter, 2008, vol. 20, p. 104259.

    Article  ADS  Google Scholar 

  15. Y. Tomota, H. Tokuda, Y. Adachi, M. Wakita, N. Minakawa, A. Moriai, and Y. Morii: Acta Mater., 2004, vol. 52, pp. 5737–45.

    Article  CAS  Google Scholar 

  16. J.W. Hutchinson: Proc. R. Soc. London, Ser. A, 1970, vol. 319, pp. 247–72.

    Article  ADS  CAS  Google Scholar 

  17. R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., 1993, vol. 41, pp. 2611–24.

    Article  CAS  Google Scholar 

  18. N. Jia, R. Lin Peng, Y.D. Wang, S. Johansson, and P.K. Liaw: Acta Mater., 2008, vol. 56, pp. 782–93.

    Article  CAS  Google Scholar 

  19. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge, MA, 1971.

    Google Scholar 

  20. H.P. Shen, T.C. Lei, and J.Z. Liu: Mater. Technol., 1986, vol. 2, pp. 28–33.

    CAS  Google Scholar 

Download references

Acknowledgments

Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the United States Department of Energy under Contract No. DE-AC05-76RL01830. This work was funded by the Department of Energy Office of FreedomCAR and Vehicle Technologies under the Automotive Lightweighting Materials Program managed by Dr. Joseph Carpenter and the National Natural Science Foundation of China (Grant Nos. 50671022 and 50725102). Use of the APS was supported by the United States Department of Energy, Office of Science Laboratory, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. D. Wang.

Additional information

Manuscript submitted October 3, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cong, Z.H., Jia, N., Sun, X. et al. Stress and Strain Partitioning of Ferrite and Martensite during Deformation. Metall Mater Trans A 40, 1383–1387 (2009). https://doi.org/10.1007/s11661-009-9824-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9824-2

Keywords

Navigation