Skip to main content
Log in

Improved Resistance to Hydrogen-Induced Cracking by Tempering of Intercritically Rolled Accelerated-Cooled X65 Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Publisher Correction to this article was published on 19 June 2023

This article has been updated

Abstract

Hydrogen-induced cracking (HIC) occurs in pipeline steels used in oil and gas applications that are rich in hydrogen sulfide gas also known as sour service environments. In this study, an experimental X65 steel was produced by intercritically finish rolling, accelerated cooling, then air-cooling to room temperature. This thermo-mechanical processing scheme resulted in a mixture of quasi-polygonal ferrite and martensite/austenite (M/A) microconstituents, also known as granular bainite. Sections from the steel were also tempered at 300 °C, 400 °C, 500 °C, and 600 °C for 40 min, which resulted in a significant increase in HIC resistance and impact toughness, along with a marginal increase in yield strength and maintenance of untempered hardness. The evolution of HIC resistance, tensile properties, and impact toughness is discussed in the context of phase fraction, dislocation density, and microstructural evolution. The current work demonstrates the potential for tempering after thermo-mechanical processing to reduce HIC susceptibility and increase impact toughness while nominally maintaining yield strength and hardness in microalloyed pipeline steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. Petroleum and Natural Gas Industries—Materials for Use in H2S-Containing Environments in Oil and Gas Production, NACE MR0175/ISO15156–2, 2019.

  2. K.O. Findley, S.K. Lawrence, and M.K. O’Brien: Encyclopedia of Materials: Metals and Alloys, vol. 2, Elsevier Inc., Cambridge, MA, 2021, pp. 235–49.

    Google Scholar 

  3. Y. Zhou, T. Jia, X. Zhang, Z. Liu, and R.D.K. Misra: Mater. Sci. Eng. A, 2015, vol. 626, pp. 352–61.

    Article  CAS  Google Scholar 

  4. G. Krauss: Steels- Processing Structure and Performance, 2nd ed. ASM International, Materials Park, OH, 2005.

    Google Scholar 

  5. B.C. De Cooman and J.G. Speer: Fundamentals of Steel Product Physical Metallurgy, Association for Iron & Steel Technology, Warrendale, PA, 2012, pp. 135–89.

    Google Scholar 

  6. G. Krauss: Iron Steel Technol., 2011, vol. 8, pp. 187–95.

    Google Scholar 

  7. V. Euser: PhD Thesis, Colorado School of Mines, 2020.

  8. V.K. Judge: M.S. Thesis, Colorado School of Mines, 2017.

  9. V.K. Judge, J.G. Speer, K.D. Clarke, K.O. Findley, and A.J. Clarke: Sci. Rep., 2018, vol. 8, pp. 1–6.

    Article  CAS  Google Scholar 

  10. Y. Luo, J. Min Peng, H. Bin Wang, and X. Chun Wu: Mater Sci. Eng. A., 2010, vol. 527(15), pp. 3433–37.

    Article  Google Scholar 

  11. I. Vieira: PhD Thesis, Colorado School of Mines, 2018.

  12. I. Vieira, J. Klemm-Toole, E. Buchner, D.L. Williamson, K.O. Findley, and E. De Moor: Sci. Rep., 2017, vol. 7, pp. 1–4.

    Article  Google Scholar 

  13. B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21, pp. 817–29.

    Article  Google Scholar 

  14. T. Tanaka: Int. Met. Rev., 1981, vol. 26, pp. 185–212.

    Article  CAS  Google Scholar 

  15. W.K. Kim, S.U. Koh, B.Y. Yang, and K.Y. Kim: Corros. Sci., 2008, vol. 50, pp. 3336–42.

    Article  CAS  Google Scholar 

  16. X.B. Shi, W. Yan, W. Wang, L.Y. Zhao, Y.Y. Shan, and K. Yang: Acta Metall. Sin. Eng. Lett., 2015, vol. 28, pp. 799–808.

    Article  CAS  Google Scholar 

  17. G.T. Park, S.U. Koh, H.G. Jung, and K.Y. Kim: Corros. Sci., 2008, vol. 50, pp. 1865–71.

    Article  CAS  Google Scholar 

  18. S.U. Koh, H.G. Jung, K.B. Kang, G.T. Park, and K.Y. Kim: Corrosion, 2008, vol. 64, pp. 574–85.

    Article  CAS  Google Scholar 

  19. F. Boratto, R. Barbosa, S. Yue, J.J. Jonas: International Conference on Physical Metallurgy of Thermomechanical Processing of Steels and Other Metals, 1988, pp. 383–90.

  20. M.K. O’Brien: PhD Thesis, Colorado School of Mines, 2021.

  21. Standard Test Methods for Tension Testing of Metallic Materials, ASTM E8/E9M, 2008.

  22. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM E23, 2018.

  23. Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking, NACE TM0284, 2016.

  24. D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, and E. De Moor: Acta Mater., 2015, vol. 90, pp. 417–30.

    Article  CAS  Google Scholar 

  25. S. Takebayashl, T. Kunieda, N. Yoshinaga, K. Ushioda, and S. Ogata: ISIJ Int., 2010, vol. 50, pp. 875–82.

    Article  Google Scholar 

  26. ImageJ, (n.d.). Image Processing and Analysis in Java. imagej.net/ij/.

  27. P. Schaaf, S. Wiesen, and U. Gonser: Acta Metall. Mater., 1992, vol. 40, pp. 373–79.

    Article  CAS  Google Scholar 

  28. D.T. Pierce, D.R. Coughlin, D.L. Williamson, J. Kähkönen, A.J. Clarke, K.D. Clarke, J.G. Speer, and E. De Moor: Scr. Mater., 2016, vol. 121, pp. 5–9.

    Article  CAS  Google Scholar 

  29. M.S. Rashid and V.N. Rao: Metall. Trans. A, 1982, vol. 13, pp. 131679–86.

    Article  Google Scholar 

  30. P.H. Chang: Metall. Trans. A, 1984, vol. 15, pp. 73–86.

    Article  Google Scholar 

  31. M.W. Tong, P.K.C. Venkatsurya, W.H. Zhou, R.D.K. Misra, B. Guo, K.G. Zhang, and W. Fan: Mater. Sci. Eng. A, 2014, vol. 609, pp. 209–16.

    Article  CAS  Google Scholar 

  32. H. Zhang, X. Cheng, B. Bai, and H. Fang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 920–24.

    Article  Google Scholar 

  33. J. Nieto, T. Elias, G. Lopez, G. Campos, F. Lopez, R. Garcia, A.K. De: Mater. Sci. Tech. A, 2012, pp. 1044–53.

  34. J. Nieto, T. Elías, G. Lopez, G. Campos, F. Lopez, R. Garcia, and A.K. De: J. Mater. Eng. Perform., 2013, vol. 22, pp. 2493–99.

    Article  CAS  Google Scholar 

  35. K. Matsumoto, Y. Kobayashi, K. Ume, K. Murakami, K. Taira, and K. Arikata: Corrosion, 1986, vol. 42, pp. 337–45.

    Article  CAS  Google Scholar 

  36. M.A. Mohtadi-Bonab, M. Eskandari, and J.A. Szpunar: Mater. Sci. Eng. A, 2014, vol. 620, pp. 97–106.

    Article  CAS  Google Scholar 

  37. G. Angus: M.S. Thesis, Colorado School of Mines, 2014.

Download references

Acknowledgments

The support of the sponsors of the Advanced Steel Processing and Products Research Center, an industry-university cooperative research center at the Colorado School of Mines; and Arcelor Mittal, for providing the material.

Funding

This work was supported by the Advanced Steel Processing and Products Research Center at the Colorado School of Mines, Golden, CO.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. O’Brien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, M.K., Lucon, E., Huey, Z. et al. Improved Resistance to Hydrogen-Induced Cracking by Tempering of Intercritically Rolled Accelerated-Cooled X65 Steel. Metall Mater Trans A 54, 2146–2159 (2023). https://doi.org/10.1007/s11661-023-06975-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-06975-4

Navigation