Multivariable Analysis of Electrodeposited Silane/Zinc Coating—Improvement of Cathodic Protection of Steel


In order to enhance corrosion protection efficiency of electrodeposited sol–gel zinc/silica coatings, this paper resorted to a central composite design as a tool to improve cathodic protection effectiveness time and electrochemical tests to understand the film protection mechanism. Coatings were produced by electrodeposition of a mixture of tetraethoxysilane (TEOS) and Zn2+ onto carbon steel. The amount of silane agent, concentration of zinc nitrate and the applied potential were chosen as the variables to be studied. Open-circuit potentials in NaCl 3.5% (wt.) solution were monitored to verify the duration of cathodic protection, according to ISO 15589-2:201. Microstructures characterization and distribution of deposited zinc were determined by scanning electron microscopy and energy-dispersive x-ray spectroscopy. At last, coating degradation was analyzed by potentiodynamic polarization curves, electrochemical impedance spectroscopy and visual inspection of corrosion products. Results revealed films whose cathodic protection endured more than 600 min of immersion when higher concentrations of Zn2+ were combined with lower potentials and lower silane content. Furthermore, visual inspection of immersed specimens showed no corrosion signs for carbon steel samples deposited with zinc and TEOS, even after 20 h, providing a superior protection when compared to the sample deposited solely with zinc.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    L.L. Jiang, L.K. Wu, J.M. Hu, J.Q. Zhang, and C.N. Cao, Electrodeposition of Protective Organosilane Films from a Thin Layer of Precursor Solution, Corros. Sci., 2012, 60, p 309–313

    CAS  Article  Google Scholar 

  2. 2.

    E.T. Akinlabi, A.D. Baruwa, O.P. Oladijo, N. Maledi, and J. Chinn, Characterization of Hydrophobic Silane Film Deposited on AISI, 304 Stainless Steel for Corrosion Protection, J. Mater. Eng. Perform., 2019, 28, p 6330–6339

    CAS  Article  Google Scholar 

  3. 3.

    P.R. Seré, W. Egli, A.R. Di Sarli, and C. Deyá, Preparation and Characterization of Silanes Films to Protect Electrogalvanized Steel, J. Mater. Eng. Perform., 2018, 27, p 1194–1202

    Article  Google Scholar 

  4. 4.

    P. Rodič, J. Katić, D. Korte, P.M. Desimone, M. Franko, S.M. Ceré, M. Metikoš-Huković, and I. Milošev, The Effect of Cerium Ions on the Structure, Porosity and Electrochemical Properties of Si/Zr-Based Hybrid Sol–Gel Coatings Deposited on Aluminum, Metals, 2018, 8(4), p 248

    Article  Google Scholar 

  5. 5.

    P. Rodič, I. Milošev, M. Lekka, F. Andreatta, and L. Fedrizzi, Corrosion Behaviour and Chemical Stability of Transparent Hybrid Sol–Gel Coatings Deposited on Aluminium in Acidic and Alkaline Solutions, Prog. Org. Coat., 2018, 124, p 286–295

    Article  Google Scholar 

  6. 6.

    A. Valero-Gómez, J. Molina, S. Pradas, M.J. López-Tendero, and F. Bosch, Microencapsulation of Cerium and Its Application in Sol–Gel Coatings for the Corrosion Protection of Aluminum Alloy AA2024, J. Sol–Gel. Sci. Technol., 2020, 93, p 36–51

    Article  Google Scholar 

  7. 7.

    M. Sheffer, A. Groysman, and D. Mandler, Electrodeposition of Sol–Gel Films on Al for Corrosion Protection, Corros. Sci., 2003, 45, p 2893–2904

    CAS  Article  Google Scholar 

  8. 8.

    R. Shacham, D. Avnir, and D. Mandler, Electrodeposition of Methylated Sol–Gel Films on Conducting Surfaces, Adv. Mater., 1999, 11(5), p 384–388

    CAS  Article  Google Scholar 

  9. 9.

    E. Sibottier, S. Sayen, F. Gaboriaud, and A. Walcarius, Factors Affecting the Preparation and Properties of Electrodeposited Silica Thin Films Functionalized with Amine or Thiol Groups, Langmuir, 2006, 22(20), p 8366–8373

    CAS  Article  Google Scholar 

  10. 10.

    G. Giordano, C. Durante, A. Gennaro, and M. Guglielmi, Electrochemical Deposition of Silica Sol–Gel Films on Stainless Steel: Preliminary Analysis of Key Variables, J. Sol–Gel. Sci. Technol., 2015, 76(2), p 233–240

    CAS  Article  Google Scholar 

  11. 11.

    S. Xu and Z.L. Wang, One-Dimensional ZnO Nanostructures: Solution Growth and Functional Properties, Nano Res., 2011, 4(11), p 1013–1098

    CAS  Article  Google Scholar 

  12. 12.

    G. Giordano, C. Durante, A. Gennaro, and M. Guglielmi, Multilayer Deposition of Silica Sol–Gel Films by Electrochemical Assisted Techniques, J. Phys. Chem., 2016, 120(50), p 28820–28824

    CAS  Google Scholar 

  13. 13.

    L.K. Wu, X.F. Zhang, and J.M. Hu, Corrosion Protection of Mild Steel by One-Step Electrodeposition of Superhydrophobic Silica Film, Corros. Sci., 2014, 84, p 482–487

    Article  Google Scholar 

  14. 14.

    D. Lv, H. Shao, X. Gao, K. Lu, H. Lu, and H. Ma, Fabrication and Corrosion Resistance Properties of Super-Hydrophobic Coatings on Iron and Steel Substrates by Creating Micro-/Nano-Structures and Modifying Rough Surfaces, RSC Adv., 2016, 6(96), p 93419–93427

    CAS  Article  Google Scholar 

  15. 15.

    Y.H. Liu, J.B. Xu, J.T. Zhang, and J.M. Hu, Electrodeposited Silica Film Interlayer for Active Corrosion Protection, Corros. Sci., 2017, 120, p 61–74

    CAS  Article  Google Scholar 

  16. 16.

    Z. Cao, H. Wang, J. Qu, M. Zhang, X. Wang, and W. Xia, One Step GO/DTES co-deposition on Steels: Electro-Induced Fabrication and Characterization of Thickness-Controlled Coatings, Chem. Eng. J., 2017, 320(15), p 588–607

    CAS  Article  Google Scholar 

  17. 17.

    L. Liu, J.M. Hu, J.Q. Zhang, and C.N. Cao, Improving the Formation and Protective Properties of Silane Films by the Combined Use of Electrodeposition and Nanoparticles Incorporation, Electrochim. Acta, 2006, 52(2), p 538–545

    CAS  Article  Google Scholar 

  18. 18.

    C. Chen, S. Dong, R. Hou, J. Hu, P. Jiang, C. Ye, R. Du, and C. Lin, Insight Into the Anti-corrosion Performance of Electrodeposited Silane/Nano-CeO2 Film on Carbon Steel, Surf. Coat. Technol., 2017, 326(15), p 183–191

    CAS  Article  Google Scholar 

  19. 19.

    R. Toledano, R. Shacham, D. Avnir, and D. Mandler, Electrochemical Co-deposition of Sol-Gel/Metal Thin Nanocomposite Films”, Chem. Mater., 2008, 20(13), p 4276–4283

    CAS  Article  Google Scholar 

  20. 20.

    L.K. Wu, J.M. Hu, and J.Q. Zhang, Electrodeposition of Zinc-Doped Silane Films for Corrosion Protection of Mild Steels, Corros. Sci., 2012, 59, p 348–351

    CAS  Article  Google Scholar 

  21. 21.

    M.A. Maher, J. Sadhan, and D.S. Mark, Corrosion Performance of Polyurethane Hybrid Coatings with Encapsulated Inhibitor, Prog. Org. Coat., 2019, 130(1), p 235–243

    Google Scholar 

  22. 22.

    P. Nafise, R. Bahram, and S. Taghi, Corrosion Protection and Adhesion Properties of the Epoxy Coating Applied on the Steel Substrate Pre-treated by a Sol–Gel Based Silane Coating Filled with Amino and Isocyanate Silane Functionalized Graphene Oxide Nanosheets, Appl. Surf. Sci., 2018, 439, p 45–59

    Article  Google Scholar 

  23. 23.

    A.P. Romano, M. Fedel, F. Deflorian, and M.G. Olivier, Silane Sol–Gel Film as Pretreatment for Improvement of Barrier Properties and Filiform Corrosion Resistance of 6016 Aluminium Alloy Covered by Cataphoretic Coating, Prog. Org. Coat., 2011, 72(4), p 695–702

    CAS  Article  Google Scholar 

  24. 24.

    J. Li, P. Zhang, Y. Wu, Y. Liu, and M. Xuan, Uniformity Study of Nickel Thin-Film Microstructure Deposited by Electroplating, Microsyst. Technol., 2009, 15(4), p 505–510

    CAS  Article  Google Scholar 

  25. 25.

    Y.J. Tan and K.Y. Lim, Understanding and Improving the Uniformity of Electrodeposition, Surf. Coat. Technol., 2003, 167(2–3), p 255–262

    CAS  Article  Google Scholar 

  26. 26.

    J.K. Luo, D.P. Chu, A.J. Flewitt, S.M. Spearing, N.A. Fleck, and W.I. Milnea, Uniformity Control of Ni Thin-Film Microstructures Deposited by Through-Mask Plating, J. Electrochem. Soc., 2005, 152(1), p C36–C41

    CAS  Article  Google Scholar 

  27. 27.

    C.A.M. Dutra, E.N. Codaro, and R.Z. Nakazato, Electrochemical Behavior and Corrosion Study of Electrodeposits of Zn and Zn-Fe-Co on Steel, Mater. Sci. Appl., 2012, 3(6), p 348–354

    CAS  Google Scholar 

  28. 28.

    M. Fedel, M.E. Druart, M. Olivier, M. Poelman, F. Deflorian, and S. Rossi, Compatibility Between Cataphoretic Electro-Coating and Silane Surface Layer for the Corrosion Protection of Galvanized Steel, Prog. Org. Coat., 2010, 69(2), p 118–125

    CAS  Article  Google Scholar 

  29. 29.

    M. Montemor, A. Cabral, M. Zheludkevich, and M. Ferreira, The Corrosion Resistance of Hot Dip Galvanized Steel Pretreated with Bis-Functional Silanes Modified with Microsilica, Surf. Coat. Technol., 2006, 200(9), p 2875–2885

    CAS  Article  Google Scholar 

  30. 30.

    D. Zhu and W.J.V. Ooij, Corrosion Protection of AA 2024-T3 by bis-[3-triethoxysilylpropyl]tetrasulfide in Sodium Chloride Solution: Part 2: Mechanism for Corrosion Protection, Corros. Sci., 2003, 45(10), p 2177–2197

    CAS  Article  Google Scholar 

  31. 31.

    B. Chico, J.C. Galván, D. Fuente, and M. Morcillo, Electrochemical Impedance Spectroscopy Study of the Effect of Curing Time on the Early Barrier Properties of Silane Systems Applied on Steel Substrates, Prog. Org. Coat., 2007, 60(1), p 45–53

    CAS  Article  Google Scholar 

Download references


This study was funded by CNPq.

Author information



Corresponding author

Correspondence to Victor Hugo C. A. Rego.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rego, V.H.C.A., Leoni, G.B. & Brasil, S.L.D.C. Multivariable Analysis of Electrodeposited Silane/Zinc Coating—Improvement of Cathodic Protection of Steel. J. of Materi Eng and Perform (2020).

Download citation


  • coatings
  • corrosion
  • electrodeposition
  • inorganic
  • nonferrous metals
  • sol–gel
  • steel