Skip to main content

Advertisement

Log in

Characterization of Hydrophobic Silane Film Deposited on AISI 304 Stainless Steel for Corrosion Protection

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This present study was conducted to determine the aptitude of hydrophobic silane coating in corrosion resistance of AISI 304 stainless steel substrate at the nanoscale. Three newly developed hydrophobic silane-based compounds of compositions, namely [tris(trimethylsiloxy)silyethyl]dimethylchlorosilane (alkyl); tridecafloro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS); and henicosyl-1,1,2,2-tetrahydrododecyltricholrosilane (FDDTS), were used as precursors to coat AISI 304 stainless steel surfaces. Prior to deposition, the substrate surfaces were pretreated with plasma oxide via a multi-step treatment to serve as adhesion. The plasma oxide and the silane precursors were deposited by using a hybrid atomic layer deposition and chemical vapor deposition process. The structural, chemical and electrochemical stabilities were investigated using SEM, AFM, XRD, ATR-FTIR, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the microstructures and morphology of the coated samples were similar, due to the chlorosilane functionalization. The FTIR indicated complete hydrolysis at the nanoscale while the polarization results showed that nano-coating can hamper the corrosion propagation mechanisms. Furthermore, the EIS results revealed that all the precursors acted as a barrier to AISI 304 dissolution into the electrolyte. The electrochemical effect was observed in the microstructural transformation of the coatings. Although all the precursors were shown to have been effective at few nanoscales, the stability of the FDDTS showed to have superseded that of alkyl and FOTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.T. Loto, Pitting Corrosion Evaluation of Austenitic Stainless Steel Type 304 in Acid Chloride Media, J. Mater. Environ. Sci., 2013, 4(4), p 448–459

    CAS  Google Scholar 

  2. Special Metals Corporation, High-Performance Alloys for Resistance to Aqueous Corrosion, Special Metals Corporation, 2000, p. 61. http://www.specialmetals.com/

  3. R.S. Oguike, Corrosion Studies on Stainless Steel (FE6956) in Hydrochloric Acid Solution, Adv. Mater. Phys. Chem., 2014, 04(08), p 153–163

    CAS  Google Scholar 

  4. I. Iliyasu, D.S. Yawas, and S.Y. Aku, Corrosion Behavior of Austenitic Stainless Steel in Sulphuric Acid at Various Concentrations, Adv. Appl. Sci. Res., 2012, 3(6), p 3909–3915

    CAS  Google Scholar 

  5. A.S. Afolabi, J.H. Potgieter, A.S. Abdulkareem, and N. Fungura, Effect of Tempering Temperature and Time on the Corrosion Behaviour of 304 and 316 Austenitic Stainless Steels in Oxalic Acid, World Acad. Sci. Eng. Technol., 2011, 79(7), p 528–532

    Google Scholar 

  6. W.Y. Lai, W.Z. Zhao, Z.F. Yin, and J. Zhang, Electrochemical and XPS Studies on Corrosion Behaviours of AISI, 304 and AISI, 316 Stainless Steels under Plastic Deformation in Sulphuric Acid Solution, Surf. Interface Anal., 2012, 44(5), p 505–512

    CAS  Google Scholar 

  7. Z. Hai-lin, Y. Shu-jun, and Z. Peng, Evaluation of Fatigue and Corrosion, Analysis and Comparison with Hardness for Stainless Steel—304, J. Eng., 2017, 1(1), p 22–32

    Google Scholar 

  8. X. Shi and N.S. Dalal, Generation of Hydroxyl Radical by Chromate in Biologically Relevant Systems: Role of Cr(V) Complexes versus Tetraperoxochromate(V), Environ. Health Perspect., 1994, 102(SUPPL. 3), p 231–236

    CAS  Google Scholar 

  9. D.W. Schaefer, G. Pan, and W. Van Ooji, Anticorrosion Coatings: Can They Be Made without Chromium?, Los Alamos Sci., 2006, 30, p 172–177

    Google Scholar 

  10. A.N. Rider, Factors Influencing the Durability of Epoxy Adhesion to Silane Pretreated Aluminium, Int. J. Adhes. Adhes., 2006, 26(1–2), p 67–78

    CAS  Google Scholar 

  11. J. Yu, S. Liu, F. Li, and T. Wang, Na2SiO3/Al2O3 Composite Coatings on 304 Stainless Steels for Enhanced High Temperature Oxidation Inhibition and Chloride-Induced Corrosion Resistance, Surf. Coat. Technol., 2017, 309, p 1089–1098

    CAS  Google Scholar 

  12. G. Witucki, A Silane Primer: Chemistry and Applications of Alkoxy Silanes, J. Coat. Technol., 1993, 65(822), p 57–60

    CAS  Google Scholar 

  13. E. Metwalli, D. Haines, O. Becker, S. Conzone, and C.G. Pantano, Surface Characterizations of Mono-, Di-, and Tri-Aminosilane Treated Glass Substrates, J. Colloid Interface Sci., 2006, 298(2), p 825–831

    CAS  Google Scholar 

  14. R.A. Difelice, “An Investigation of Plasma Pretreatments and Plasma Polymerized Thin Films for Titanium/Polyimide Adhesion” (2001).

  15. X. Yuan, Z.F. Yue, X. Chen, S.F. Wen, L. Li, and T. Feng, EIS Study of Effective Capacitance and Water Uptake Behaviors of Silicone-Epoxy Hybrid Coatings on Mild Steel, Prog. Org. Coat., 2015, 86, p 41–48

    CAS  Google Scholar 

  16. R. Figueira, I. Fontinha, C. Silva, and E. Pereira, Hybrid Sol-Gel Coatings: Smart and Green Materials for Corrosion Mitigation, Coatings, 2016, 6(1), p 12

    Google Scholar 

  17. J. Wojciechowski, K. Szubert, R. Peipmann, M. Fritz, U. Schmidt, A. Bund, and G. Lota, Anti-Corrosive Properties of Silane Coatings Deposited on Anodised Aluminium, Electrochim. Acta, 2016, 220, p 1–10

    CAS  Google Scholar 

  18. G.S. An, S.W. Choi, T.G. Kim, J.R. Shin, Y.I. Kim, S.C. Choi, and Y.G. Jung, Amino-Functionalization of Colloidal Alumina Particles for Enhancement of the Infiltration Behavior in a Silica-Based Ceramic Core, Ceram. Int., 2017, 43(1), p 157–161

    CAS  Google Scholar 

  19. Y.S. Lee, D. won Choi, B. Shong, S. Oh, and J.S. Park, Low Temperature Atomic Layer Deposition of SiO2 thin Films Using Di-Isopropylaminosilane and Ozone, Ceram. Int., 2017, 43(2), p 2095–2099

    CAS  Google Scholar 

  20. L. Huang, Q. Jin, X. Qu, J. Jin, C. Jiang, W. Yang, L. Wang, and W. Shi, Characterization and Simulation on Antireflective Coating of Amorphous Silicon Oxide Thin Films with Gradient Refractive Index, Superlattices Microstruct., 2016, 96, p 198–204

    CAS  Google Scholar 

  21. J. Spivack, O. Siclovan, S. Gasaway, E. Williams, A. Yakimov, and J. Gui, Improved Efficiency of Dye Sensitized Solar Cells by Treatment of the Dyed Titania Electrode with Alkyl(Trialkoxy)Silanes, Sol. Energy Mater. Sol. Cells, 2006, 90(9), p 1296–1307

    CAS  Google Scholar 

  22. N.P. Dasgupta, S. Xu, H.J. Jung, A. Iancu, R. Fasching, R. Sinclair, and F.B. Prinz, Nickel Silicide Nanowire Arrays for Anti-Reflective Electrodes in Photovoltaics, Adv. Funct. Mater., 2012, 22(17), p 3650–3657

    CAS  Google Scholar 

  23. J.L. Kepler and C.E. Locke, Evaluation of Corrosion Protection Methods for Reinforced Concrete Highway Structures, Corrosion, 2000, (58), p 231

  24. K. Awsiuk, A. Budkowski, A. Psarouli, P. Petrou, A. Bernasik, S. Kakabakos, J. Rysz, and I. Raptis, Protein Adsorption and Covalent Bonding to Silicon Nitride Surfaces Modified with Organo-Silanes: Comparison Using AFM, Angle-Resolved XPS and Multivariate ToF-SIMS Analysis, Colloids Surfaces B Biointerfaces, 2013, 110, p 217–224

    CAS  Google Scholar 

  25. M.P. Neupane, S.J. Lee, J.Y. Kang, I.S. Park, T.S. Bae, and M.H. Lee, Surface Characterization and Corrosion Behavior of Silanized Magnesium Coated with Graphene for Biomedical Application, Mater. Chem. Phys, 2015, 163, p 229–235

    CAS  Google Scholar 

  26. L. Chen, Y. Wang, P. Fei, W. Jin, H. Xiong, and Z. Wang, Enhancing the Performance of Starch-Based Wood Adhesive by Silane Coupling Agent(KH570), Int. J. Biol. Macromol., 2017, 104, p 137–144

    CAS  Google Scholar 

  27. N. Wang, D. Xiong, M. Li, Y. Deng, Y. Shi, and K. Wang, Superhydrophobic Surface on Steel Substrate and Its Anti-Icing Property in Condensing Conditions, Appl. Surf. Sci., 2015, 355, p 226–232

    CAS  Google Scholar 

  28. F. de Buyl, Organo-Functional Silanes, in Inorganic Polymers, Nova Science Publishers Inc., Seneffe, Belgium, 2007, p 88–93

  29. W.J. van Ooij, D. Zhu, V. Palanivel, J.A. Lamar, and M. Stacy, Overview: the Potential of Silanes for Chromate Replacement in Metal Finishing Industries, Silicon Chem., 2006, 3(1–2), p 11–30

    CAS  Google Scholar 

  30. U. Schubert, Chemistry and Fundamentals of the Sol-Gel Process, in The Sol-Gel Handbook, Wiley, Blackwell, 2015, p 1–28

  31. Y. Liu, H. Cao, Y. Yu, and S. Chen, Corrosion Protection of Silane Coatings Modified by Carbon Nanotubes on Stainless Steel, Int. J. Electrochem. Sci., 2015, 10(4), p 3497–3509

    CAS  Google Scholar 

  32. L. Calabrese, V. Brancato, L. Bonaccorsi, A. Frazzica, A. Caprì, A. Freni, and E. Proverbio, Development and Characterization of Silane-Zeolite Adsorbent Coatings for Adsorption Heat Pump Applications, Appl. Therm. Eng., 2017, 116, p 364–371

    CAS  Google Scholar 

  33. K.J. Jothi and K. Palanivelu, Anti-Corrosion Coatings on SS 304 by Incorporation of Pr6O11–TiO2 in Siloxane Network, Surf. Eng. Appl. Electrochem, 2015, 51(6), p 589–597

    Google Scholar 

  34. P. Balan, M.J. Shelton, D.O.L. Ching, G.C. Han, and L.K. Palniandy, Modified Silane Films for Corrosion Protection of Mild Steel, Procedia Mater. Sci., 2014, 6(Icmpc), p 244–248

    CAS  Google Scholar 

  35. M. Longhi, S.R. Kunsta, L.V.R. Beltrami, E.K. Kerstner, C.I. Silva Filho, V.H.V. Sarmento, and C. Malfatti, Effect of Tetraethoxy-Silane (TEOS) Amounts on the Corrosion Prevention Properties of Siloxane-PMMA Hybrid Coatings on Galvanized Steel Substrates, Mater. Res, 2015, 18(6), p 1140–1155

    CAS  Google Scholar 

  36. Z. Li, R. Wang, R.J. Young, L. Deng, F. Yang, L. Hao, W. Jiao, and W. Liu, Control of the Functionality of Graphene Oxide for Its Application in Epoxy Nanocomposites, Polym. (U. K.), 2013, 54(23), p 6437–6446

    CAS  Google Scholar 

  37. Y.J. Wan, L.X. Gong, L.C. Tang, L. Bin Wu, and J.X. Jiang, Mechanical Properties of Epoxy Composites Filled with Silane-Functionalized Graphene Oxide, Compos. Part A Appl. Sci. Manuf., 2014, 64, p 79–89

    CAS  Google Scholar 

  38. J. Yang, J. Xiao, J. Zeng, L. Bian, C. Peng, and F. Yang, Matrix Modification with Silane Coupling Agent for Carbon Fiber Reinforced Epoxy Composites, Fibers Polym., 2013, 14(5), p 759–766

    CAS  Google Scholar 

  39. A.J. Allen, J. Ilavsky, G.G. Long, J.S. Wallace, C.C. Berndt, and H. Herman, Microstructural Characterization of Yttria-Stabilized Zirconia Plasma-Sprayed Deposits Using Multiple Small-Angle Neutron Scattering, Acta Mater., 2001, 49(9), p 1661–1675

    CAS  Google Scholar 

  40. T. Gnaeupel-Herold, H.J. Prask, J. Barker, F.S. Biancaniello, R.D. Jiggetts, and J. Matejicek, Microstructure, Mechanical Properties, and Adhesion in IN625 Air Plasma Sprayed Coatings, Mater. Sci. Eng. A, 2006, 421(1–2), p 77–85

    Google Scholar 

  41. F.J. Antunes, V.R.D.S. de Sá Brito, I.N. Bastos, and H.R.M. Costa, Characterization of FeCr and FeCoCr Alloy Coatings of Carbon Steels for Marine Environment Applications, Appl. Adhes. Sci., 2013, 1(1), p 1–10

    Google Scholar 

  42. R. Weber and O. De, “Method of Producing Chlorosilane,” (United State of america, 2005).

  43. P.V. Mehta and A.I. Ranka, Ionic Organosilicon Compounds and Compositions Thereof (India), United States Patent, 2009, p 11

  44. ASTM G3-89, Standard Method for Conventions Applicable to Electrochemical Measurements in Corrosion Testing. in Annual book of ASTM standards, Vol 03.02., (Conshohocken, PA, 2006).

  45. M. Boutamine, A. Bellel, S. Sahli, Y. Segui, and P. Raynaud, Hexamethyldisiloxane Thin Films as Sensitive Coating for Quartz Crystal Microbalance Based Volatile Organic Compounds Sensors, Thin Solid Films, 2014, 552, p 196–203

    CAS  Google Scholar 

  46. W.R. Ashurst, C. Yau, C. Carraro, R. Maboudian, and M.T. Dugger, Dichlorodimethylsilane as an Anti-Stiction Monolayer for MEMS: a Comparison to the Octadecyltrichlosilane Self-Assembled Monolayer, J. Microelectromech. Syst., 2001, 10(1), p 41–49

    CAS  Google Scholar 

  47. Q. Tao, H. He, T. Li, R.L. Frost, D. Zhang, and Z. He, Tailoring Surface Properties and Structure of Layered Double Hydroxides Using Silanes with Different Number of Functional Groups, J. Solid State Chem, 2014, 213, p 176–181

    CAS  Google Scholar 

  48. A. Aydınoğlu and A.B.H. Yoruç, Effects of Silane-Modified Fillers on Properties of Dental Composite Resin, Mater. Sci. Eng. C, 2017, 79, p 382–389

    Google Scholar 

  49. N. Soltani, N. Tavakkoli, M. Khayatkashani, M.R. Jalali, and A. Mosavizade, Green Approach to Corrosion Inhibition of 304 Stainless Steel in Hydrochloric Acid Solution by the Extract of Salvia Officinalis Leaves, Corros. Sci., 2012, 62, p 122–135

    CAS  Google Scholar 

  50. T.P. Chou, C. Chandrasekaran, S. Limmer, C. Nguyen, and G.Z. Cao, Organic-Inorganic Sol-Gel Coating for Corrosion Protection of Stainless Steel, J. Mater. Sci. Lett., 2002, 21(3), p 251–255

    CAS  Google Scholar 

  51. H. Cheraghi, M. Shahmiri, and Z. Sadeghian, Corrosion Behavior of TiO2-NiO Nanocomposite Thin Films on AISI, 316L Stainless Steel Prepared by Sol-Gel Method, Thin Solid Films, 2012, 522, p 289–296

    CAS  Google Scholar 

  52. J.R. Macdonald, J. Schoonman, and A.P. Lehnen, Applicability and Power of Complex Nonlinear Least Squares for the Analysis of Impedance and Admittance Data, J. Electroanal. Chem. Interfacial Electrochem., 1982, 131(C), p 77–95

    CAS  Google Scholar 

  53. G.W. Walter, A Review of Impedance Plot Methods Used for Corrosion Performance Analysis of Painted Metals, Corros. Sci., 1986, 26(9), p 681–703

    CAS  Google Scholar 

  54. H. Cesiulis, N. Tsyntsaru, A. Ramanavicius, and G. Ragoisha, Nanostructures and Thin Films for Multifunctional Applications, Springer, Berlin, 2016, p 3–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Oladijo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinlabi, E.T., Baruwa, A.D., Oladijo, O.P. et al. Characterization of Hydrophobic Silane Film Deposited on AISI 304 Stainless Steel for Corrosion Protection. J. of Materi Eng and Perform 28, 6330–6339 (2019). https://doi.org/10.1007/s11665-019-04349-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04349-9

Keywords

Navigation