Skip to main content
Log in

Preparation and Characterization of Silanes Films to Protect Electrogalvanized Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Silanes are an interesting alternative to chromate-based surface treatments for temporary protection of electrogalvanized steel. In this work, the protective behavior of 3-mercaptopropyltrimethoxysilane (MTMO), 3-aminopropyltriethoxysilane (AMEO), or 3-glycidoxypropyltrimethoxysilane (GLYMO) films applied on electrogalvanized automotive quality steel sheets has been studied. The silane coating morphology, composition, and porosity were characterized by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), x-ray fluorescence, immersion in copper sulfate, and cyclic voltammetry. The corrosion protection was evaluated by polarization curves, electrochemical noise measurements, electrochemical impedance spectrometry, and accelerated humidity chamber tests. The results showed that the silanes protect temporarily electrogalvanized steel from corrosion. MTMO forms a relatively thick and cracked film. AMEO and GLYMO films were so thin that they could not be observed by SEM but silicon was detected by EDS. MTMO provided good temporary protection, being an alternative to replace Cr(VI) as protector of electrogalvanized steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. U. S. P. H. Service, Toxicological Profile for Chromium No. ASTSDR/TP-88/10, Agency for Toxic Substances, Public Health Service, 2010

  2. M.G.S. Ferreira, R.G. Duarte, M.F. Montemor, and A.M.P. Simões, Silanes and Rare Earth Salts as Chromate Replacers for Pre-treatments on Galvanised Steel, Electrochim. Acta, 2004, 49, p 2927–2935

    Article  Google Scholar 

  3. G. Kong, L. Liu, J. Lu, C. Che, and Z. Zhong, Corrosion Behavior of Lanthanum-Based Conversion Coating Modified with Citric Acid on Hot Dip Galvanized Steel in Aerated 1 M NaCl Solution, Corros. Sci., 2011, 53(4), p 1621–1626

    Article  Google Scholar 

  4. M.F. Montemor, A.M. Simões, and M.G.S. Ferreira, Composition and Behaviour of Cerium Films on Galvanised Steel, Progr. Org. Coat., 2001, 43(4), p 274–281

    Article  Google Scholar 

  5. X. Zhang, C. van den Bos, W.G. Sloof, A. Hovestad, H. Terryn, and J.H.W. de Wit, Comparison of the Morphology And Corrosion Performance of Cr(VI)- and Cr(III)-Based Conversion Coatings on Zinc, Surf. Coat. Technol., 2005, 199(1), p 92–104

    Article  Google Scholar 

  6. D. Zhu and W.J. van Ooij, Corrosion Protection of Metals by Water-Based Silane Mixtures of bis-[trimethoxysilylpropyl]amine and Vinyltriacetoxysilane, Progr. Org. Coat., 2004, 49(1), p 42–53

    Article  Google Scholar 

  7. W.J. van Ooij, D. Zhu, M. Stacy, A. Seth, T. Mugada, J. Gandhi, and P. Puomi, Corrosion Protection Properties of Organofunctional Silanes—An Overview, Tsinghua Sci. Technol., 2005, 10(6), p 639–664

    Article  Google Scholar 

  8. W.E.G. Hansal, S. Hansal, M. Pölzler, A. Kornherr, G. Zifferer, and G.E. Nauer, Investigation of Polysiloxane Coatings as Corrosion Inhibitors of Zinc Surfaces, Surf. Coat. Tech., 2006, 200(9), p 3056–3063

    Article  Google Scholar 

  9. M.G.S. Ferreira, M.L. Zheludkevich, J. Tedim, and K.A. Yasakau, Self-Healing Nanocoatings for Corrosion Control, Woodhead Publishing Limited, Cambridge, 2012

    Book  Google Scholar 

  10. B.C. Dave, X.K. Hu, Y. Devaraj, and S.K. Dhali, Sol–Gel Derived Corrosion–Protection Coatings, J. Sol–Gel Sci. Technol., 2004, 32(1–3), p 143–147

    Article  Google Scholar 

  11. S. Ono, H. Tsuge, Y. Nishi, and S. Hirano, Improvment of Corrosion Resistance of Metals by an Environmentally Friendly Silica Coating Method, J. Sol–Gel Sci. Technol., 2004, 29(3), p 147–153

    Article  Google Scholar 

  12. X.F. Yang, D.E. Tallman, V.J. Gelling, G.P. Bierwagen, L.S. Kasten, and J. Berg, Use of a Sol–Gel Conversion Coating for Aluminum Corrosion Protection, Surf. Coat. Technol., 2001, 140(1), p 44–50

    Article  Google Scholar 

  13. J.H. Osborne, Observations on Chromate Conversion Coatings From a Sol–Gel Perspective, Progr. Org. Coat., 2001, 41(4), p 280–286

    Article  Google Scholar 

  14. A. Conde, J. De Damborenea, A. Duran, and M. Menning, Protective Properties of a Sol–Gel Coating on Zinc Coated Steel, J. Sol–Gel Sci. Technol., 2006, 37, p 79–85

    Article  Google Scholar 

  15. U. Eduok, R. Suleiman, M. Khaled, and R. Akid, Enhancing Water Repellency and Anticorrosion Properties of a Hybridsilica Coating on Mild Steel, Progr. Org. Coat., 2016, 93, p 97–108

    Article  Google Scholar 

  16. U. Bexell, T.M. Grehk, M. Olsson, and U. Gelius, XPS and AES Characterization of Hydrolysed γ-mercaptopropyltrimethoxysilane Deposited on Al, Zn and Al–43.4Zn–1.6Si Alloy-Coated Steel, Surf. Interface Anal., 2004, 36(7), p 624–631

    Article  Google Scholar 

  17. U. Bexell and M. Olsson, Time-of-Flight SIMS Characterization of Hydrolysed Organofunctional and Non-organofunctional Silanes Deposited on Al, Zn and Al–43.4Zn–1.6Si Alloy-Coated Steel, Surf. Interface Anal., 2003, 35(11), p 880–887

    Article  Google Scholar 

  18. U. Bexell and T.M. Grehk, A Corrosion Study of Hot-Dip Galvanized Steel Sheet Pre-treated with γ-mercaptopropyltrimethoxysilane, Surf. Coat. Technol., 2007, 201(8), p 4734–4742

    Article  Google Scholar 

  19. B. Zand Naderi and M. Mahdavian, Corrosion and Adhesion Study of Polyurethane Coating on Silane Pretreated Aluminum, Surf. Coat. Technol., 2009, 203(12), p 1677–1681

    Article  Google Scholar 

  20. B. Ramezanzadeh, E. Raeisi, and M. Mahdavian, Studying Various Mixtures of 3-Aminopropyltriethoxysilane (APS) and Tetraethylorthosilicate (TEOS) Silanes on the Corrosion Resistance of Mild Steel and Adhesion Properties of Epoxy Coating, Int. J. Adhes. Adhes., 2015, 63, p 166–176

    Article  Google Scholar 

  21. M. Pantoja, J. Abenojar, M.A. Martínez, and F. Velasco, Silane Pretreatment of Electrogalvanized Steels: Effect on Adhesive Properties, Int. J. Adhes. Adhes., 2016, 65, p 54–62

    Article  Google Scholar 

  22. B. Chico, D. de la Fuente, M.L. Pérez, and M. Morcillo, Corrosion Resistance of Steel Treated with Different Silane/Paint Systems, J. Coat. Technol. Res., 2012, 9(1), p 3–13

    Article  Google Scholar 

  23. M.L. Abel, J.F. Watts, and R.P. Digby, The Influence of Process Parameters on the Interfacial Chemistry of γ-GPS on Aluminium: A Review, J. Adhes., 2004, 80(4), p 291–312

    Article  Google Scholar 

  24. T. Titz, F. Hörzenberger, K. Van den Bergh, and G. Grundmeier, Correlation of interfacial electrode potential and corrosion resistance of plasma polymer coated galvanized steel. Part 2: Influence of forming induced defects, Corros. Sci., 2010, 52(2), p 378–386

    Article  Google Scholar 

  25. P.R. Seré, C. Deyá, W.A. Egli, C.I. Elsner, and A.R. Di Sarli, Protection of Galvanized Steel with Silanes: Its Comparison with Chromium(VI), J. Mater. Eng. Perform., 2014, 23, p 378–386

    Article  Google Scholar 

  26. M. Dattilo, Polarization and Corrosion of Electrogalvanized Steel—Evaluation of Zinc Coatings Obtained from Waste-Derived Zinc Electrolytes, J. Electrochem. Soc., 1985, 132, p 2557–2561

    Article  Google Scholar 

  27. J.R. Kearns, J.R. Scully, P.R. Roberge, and J.L. Dawson, Electrochemical Noise Measurements for Corrosion Aplications, ASTM, 1996

  28. R.A. Cottis, Interpretation of Electrochemical Noise Data, Corrosion, 2001, 57(3), p 265–285

    Article  Google Scholar 

  29. F. Huet, Electrochemical Noise Technique, CRC Taylor & Francis, Boca Raton, 2005

    Book  Google Scholar 

  30. Y.J. Tan, S. Bailey, and B. Kinsella, The Monitoring of the Formation and Destruction of Corrosion Inhibitor Films Using Electrochemical Noise Analysis (ENA), Corros. Sci., 1996, 38(10), p 1681–1695

    Article  Google Scholar 

  31. S.S. Jamali and D.J. Mills, A Critical Review of Electrochemical Noise Measurement as a Tool For Evaluation of Organic Coatings, Progr. Org. Coat., 2016, 95, p 26–37

    Article  Google Scholar 

  32. F.C. Walsh, C. Ponce de León, C. Kerr, S. Court, and B.D. Barker, Electrochemical Characterisation of the Porosity and Corrosion Resistance of Electrochemically Deposited Metal Coatings, Surf. Coat. Tech., 2008, 202(21), p 5092–5102

    Article  Google Scholar 

  33. L. Jiang, M. Wolpers, P. Volovitch, and K. Ogle, An Atomic Emission Spectroelectrochemical Study of Passive Film Formation and Dissolution on Galvanized Steel Treated with Silicate Conversion Coatings, Surf. Coat. Technol., 2012, 206(13), p 3151–3157

    Article  Google Scholar 

  34. B. Chico, J.C. Galván, D. de la Fuente, and M. Morcillo, Electrochemical Impedance Spectroscopy Study of the Effect of Curing Time on the Early Barrier Properties of Silane Systems Applied on Steel Substrates, Progr. Org. Coat., 2007, 60(1), p 45–53

    Article  Google Scholar 

  35. D. Zhu and W.J. van Ooij, Structural Characterization of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilylpropyl]Amine Silanes by Fourier-Transform Infrared Spectroscopy and Electrochemical Impedance Spectroscopy, J. Adhes. Sci. Technol., 2002, 16(9), p 1235–1260

    Article  Google Scholar 

  36. A. Franquet, C. Le Pen, H. Terryn, and J. Vereecken, Effect of Bath Concentration And Curing Time on the Structure of Non-functional Thin Organosilane Layers on Aluminium, Electrochim. Acta, 2003, 48(9), p 1245–1255

    Article  Google Scholar 

  37. W.J. van Ooij and D. Zhu, Electrochemical Impedance Spectroscopy of Bis-[Triethoxysilypropyl]Tetrasulfide on Al 2024-T3 Substrates, Corrosion, 2001, 57(5), p 413–427

    Article  Google Scholar 

  38. B.A. Boukamp, Manual AC-Immittance Data Analysis System “Equivalent Circuit”, Twente University of Technology, Enschede, 1989

    Google Scholar 

  39. B.A. Boukamp, Equivalent Circuit AC-Immittance data Analysis System, University of Twente, Enschede, 1993

    Google Scholar 

  40. C.X.S.F. Mertens, B.C. Cooman, and E. Temmerman, Short-Term Deterioration Of Polymer-Coated 55% Al-Zn—Part 1: Behavior of Thin Polymer Films, Corrosion, 1997, 53, p 381–387

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), the Universidad Nacional de La Plata (UNLP), and the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for the financial support to this research work. Besides, the authors thank Andres Campbell from Camsi-X for providing the silanes and the CONICET for the founding project PIP 0043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Deyá.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seré, P.R., Egli, W., Di Sarli, A.R. et al. Preparation and Characterization of Silanes Films to Protect Electrogalvanized Steel. J. of Materi Eng and Perform 27, 1194–1202 (2018). https://doi.org/10.1007/s11665-018-3178-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3178-0

Keywords

Navigation