Skip to main content
Log in

A Systematic Assessment of Various Stability/Instability Criteria in Predicting the Hot Deformation-Related Instabilities in Super-304H Stainless Steels

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, different existing stability/instability criteria (viz Prasad, Murty, Gegel, Alexander, Jonas, and Semiatin) are used to characterize the hot deformation instabilities of super-304H stainless steel. The instability maps are developed based on flow stress data acquired from uniaxial hot compression tests performed at various temperatures (1173-1423 K) and strain rates (0.001-10 s−1). The deformation instabilities are further validated through detailed microstructural observations. Flow localization and cracking have been identified as the signature of deformation instabilities in this alloy. The microcracks have been found to be associated with the grain boundary precipitation of coarse (~ 1- to 5-µm-sized) Nb-rich particles (mainly NbC). The instability criteria developed based on dynamic material modeling (i.e., Prasad’s and Murty’s criteria) could accurately predict the formation of microcracks in the entire hot deformation range employed in this study. Albeit the Gegel’s and Alexander’s stability criteria could correctly predict the flow localization, it has overestimated the deformation instabilities at high temperatures (> 1250 K) and low strain rates (≤ 0.1 s−1). In contrast, Jonas’ and Semiatin’s instability criteria have under-predicted the unstable domains in the studied alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.G. Tumanovskii, A.L. Shvarts, E.V. Somova, E.K. Verbovetskii, G.D. Avrutskii, S.V. Ermakova, R.N. Kalugin, and M.V. Lazarev, Review of the Coal-Fired, Over-Supercritical and Ultra-Supercritical Steam Power Plants, Therm. Eng., 2017, 64(2), p 83–96. https://doi.org/10.1134/s0040601517020082

    Article  CAS  Google Scholar 

  2. K. Laha, J. Kyono, and N. Shinya, An Advanced Creep Cavitation Resistance Cu-Containing 18Cr-12 Ni-Nb Austenitic Stainless Steel, Scr. Mater., 2007, 56(10), p 915–918. https://doi.org/10.1016/j.scriptamat.2006.12.030

    Article  CAS  Google Scholar 

  3. X.Y. San, B. Zhang, B. Wu, X.X. Wei, E.E. Oguzie, and X.L. Ma, Investigating the Effect of Cu-Rich Phase on the Corrosion Behavior of Super 304H Austenitic Stainless Steel by TEM, Corros. Sci., 2018, 130, p 143–152. https://doi.org/10.1016/j.corsci.2017.11.001

    Article  CAS  Google Scholar 

  4. D. Chen, X. Wu, E.-H. Han, and H. Sun, Oxidation Behavior of 304 Stainless Steel during Crevice Corrosion in High-Temperature Pure Water, Corrosion, 2015, 71(10), p 1213–1223. https://doi.org/10.5006/1705

    Article  CAS  Google Scholar 

  5. I. Sen, E. Amankwah, N.S. Kumar, E. Fleury, K. Oh-ishi, K. Hono, and U. Ramamurty, Microstructure and Mechanical Properties of Annealed SUS 304H Austenitic Stainless Steel with Copper, Mater. Sci. Eng., A, 2011, 528(13–14), p 4491–4499. https://doi.org/10.1016/j.msea.2011.02.019

    Article  CAS  Google Scholar 

  6. Y. Sawaragi and S. Hirano, The Development of a New 18-8 Austenitic Stainless Steel (0.1C-18Cr-9Ni-3Cu-Nb, N) with High Elevated Temperatures Strength for Fossil Power Boilers, Mech. Behav. Mater., 1992, 4, p 589–594. https://doi.org/10.1016/b978-0-08-037890-9.50491-9

  7. J. Deng, Z. Liang, S. Hui, and Q. Zhao, Aging Treatment on the Microstructures and Mechanical Properties of New Groove T92/Super 304H Dissimilar Steel Joints, High Temp. Mater. Process., 2014, 34(5), p 425–433. https://doi.org/10.1515/htmp-2014-0067

    Article  CAS  Google Scholar 

  8. K.-H. Lee, J.-Y. Suh, J.-Y. Huh, D.-B. Park, S.-M. Hong, J.-H. Shim, and W.-S. Jung, Effect of Nb and Cu on the High Temperature Creep Properties of a High Mn–N Austenitic Stainless Steel, Mater. Charact., 2013, 83, p 49–57. https://doi.org/10.1016/j.matchar.2013.05.015

    Article  CAS  Google Scholar 

  9. Y. Zhou, Y. Liu, X. Zhou, C. Liu, J. Yu, Y. Huang, H. Li, and W. Li, Precipitation and Hot Deformation Behavior of Austenitic Heat-Resistant Steels: A Review, J. Mater. Sci. Technol., 2017, 33(12), p 1448–1456. https://doi.org/10.1016/j.jmst.2017.01.025

    Article  Google Scholar 

  10. N. Imai, N. Komatsubara, and K. Kunishige, Effect of Cu and Ni on Hot Workability of Hot-Rolled Mild Steel, ISIJ Int., 1997, 37(3), p 224–231. https://doi.org/10.2355/isijinternational.37.224

    Article  CAS  Google Scholar 

  11. S. Tan, Z. Wang, S. Cheng, Z. Liu, J. Han, and W. Fu, Processing Maps and Hot Workability of Super304H Austenitic Heat-Resistant Stainless Steel, Mater. Sci. Eng., A, 2009, 517(1–2), p 312–315. https://doi.org/10.1016/j.msea.2009.04.028

    Article  CAS  Google Scholar 

  12. K.B. Yoon, J.M. Yu, and T.S. Nguyen, Stress Relaxation Cracking in 304H Stainless Steel Weld of a Chemical Reactor Serviced at 560°C, Eng. Fail. Anal., 2015, 56, p 288–299. https://doi.org/10.1016/j.engfailanal.2015.01.014

    Article  CAS  Google Scholar 

  13. S. Venugopal and P.V. Sivaprasad, A Journey with Prasad’s Processing Maps, J. Mater. Eng. Perform., 2003, 12(6), p 674–686. https://doi.org/10.1361/105994903322692475

    Article  CAS  Google Scholar 

  14. P.V. Sivaprasad, S.L. Mannan, and Y.V.R.K. Prasad, Processing Parameters for the Mechanical Working of 9 Cr-1 Mo Steel: Processing Maps Approach, Mater. Sci. Technol., 2004, 20, p 1545–1550. https://doi.org/10.1179/026708304x6031

    Article  CAS  Google Scholar 

  15. K. Arun Babu, Y.H. Mozumder, R. Saha, V.S. Sarma, and S. Mandal, Hot-Workability of Super-304H Exhibiting Continuous to Discontinuous Dynamic Recrystallization Transition, Mater. Sci. Eng., A, 2018, 734, p 269–280. https://doi.org/10.1016/j.msea.2018.07.104

    Article  CAS  Google Scholar 

  16. D. Samantaray, S. Mandal, and A.K. Bhaduri, Characterization of Deformation Instability in Modified 9Cr–1Mo Steel during Thermo-Mechanical Processing, Mater. Des., 2011, 32(2), p 716–722. https://doi.org/10.1016/j.matdes.2010.07.038

    Article  CAS  Google Scholar 

  17. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892. https://doi.org/10.1007/bf02664902

    Article  Google Scholar 

  18. H. Ziegler, Progress in Solid Mechanics, I.N. Sneedon, Ed., Wiley, New York, 1963, p 63–193

    Google Scholar 

  19. S.V.S.N. Murty and B.N. Rao, On the Development of Instability Criteria during Hotworking with Reference to IN 718, Mater. Sci. Eng., A, 1998, 254(1–2), p 76–82. https://doi.org/10.1016/s0921-5093(98)00764-3

    Article  Google Scholar 

  20. H.L. Gegel, Synthesis of Atomistics and Continuum Modelling to Describe Microstructure, Computer Simulation in Material Science, R.J. Arsenault, J.R. Beeler, and D.M. Easterling, Ed., ASM International®, Materials Park, 1987, p 291–344

    Google Scholar 

  21. J.M. Alexander, Mapping Dynamic Material Behaviour, Modelling of Hot Deformation of Steels, J.G. Lenard, Ed., Springer, Berlin, 1989, p 105–115 https://doi.org/10.1007/978-3-642-52515-5_5

    Chapter  Google Scholar 

  22. J.J. Jonas, R.A. Holt, and C.E. Coleman, Plastic Stability in Tension and Compression, Acta Metall., 1976, 24(10), p 911–918. https://doi.org/10.1016/0001-6160(76)90039-0

    Article  Google Scholar 

  23. S.L. Semiatin and G.D. Lahoti, Deformation and Unstable Flow in Hot Forging of Ti-6Ai-2Sn-4Zr-2Mo-0.1Si, Metall. Trans. A, 1981, 12(10), p 1705–1717. https://doi.org/10.1007/bf02643753

    Article  CAS  Google Scholar 

  24. X. Ma, W. Zeng, K. Wang, Y. Lai, and Y. Zhou, The Investigation on the Unstable Flow Behavior of Ti17 Alloy in Α + β Phase Field Using Processing Map, Mater. Sci. Eng., A, 2012, 550, p 131–137. https://doi.org/10.1016/j.msea.2012.04.045

    Article  CAS  Google Scholar 

  25. H. Tripathy, R. Subramanian, R.N. Hajra, A.K. Rai, M. Rengachari, S. Saibaba, and T. Jayakumar, Calorimetric Investigation of Thermal Stability of 304H Cu (Fe-17.7Cr-9.3Ni-2.95Cu-0.91Mn-0.58Nb-0.24Si-0.1C-0.12N-Wt Pct) Austenitic Stainless Steel, Metall. Mater. Trans. E, 2016, 3(4), p 234–249. https://doi.org/10.1007/s40553-016-0079-8

    Article  CAS  Google Scholar 

  26. M. Mirzaee, A. Momeni, H. Keshmiri, and R. Razavinejad, Effect of Titanium and Niobium on Modifying the Microstructure of Cast K100 Tool Steel, Metall. Mater. Trans. B, 2014, 45(6), p 2304–2314. https://doi.org/10.1007/s11663-014-0150-8

    Article  CAS  Google Scholar 

  27. D. Samantaray, S. Mandal, and A.K. Bhaduri, A Critical Comparison of Various Data Processing Methods in Simple Uni-Axial Compression Testing, Mater. Des., 2011, 32(5), p 2797–2802. https://doi.org/10.1016/j.matdes.2011.01.007

    Article  CAS  Google Scholar 

  28. T.S. Prithiv, P. Bhuyan, S.K. Pradhan, V.S. Sarma, and S. Mandal, A Critical Evaluation on Efficacy of Recrystallization vs. Strain Induced Boundary Migration in Achieving Grain Boundary Engineered Microstructure in a Ni-Base Superalloy, Acta Mater., 2018, 146, p 187–201. https://doi.org/10.1016/j.actamat.2017.12.045

    Article  CAS  Google Scholar 

  29. K. Arun Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V.S. Sarma, Hot Deformation Characteristics and Processing Map of a Phosphorous Modified Super Austenitic Stainless Steel, Mater. Des., 2017, 115, p 262–275. https://doi.org/10.1016/j.matdes.2016.11.054

    Article  CAS  Google Scholar 

  30. U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater Sci., 2003, 48(3), p 171–273. https://doi.org/10.1016/s00796425(02)00003-8

    Article  CAS  Google Scholar 

  31. R. Baktash and H. Mirzadeh, A Simple Constitutive Model for Prediction of Single-Peak Flow Curves under Hot Working Conditions, J. Eng. Mater. Technol., 2016, 138(2), p 21004(1)–21004(5). https://doi.org/10.1115/1.4032153

    Article  CAS  Google Scholar 

  32. F.J. Humphreys and M. Hatherly, Chapter 13—Hot Deformation and Dynamic Restoration, Recrystallization and Related Annealing Phenomena, 2nd ed., F.J. Humphreys and M. Hatherly, Ed., Elsevier, Oxford, 2004, p 415–450

    Chapter  Google Scholar 

  33. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113. https://doi.org/10.1016/j.jallcom.2015.04.008

    Article  CAS  Google Scholar 

  34. S. Mandal, P.V. Sivaprasad, and V.S. Sarma, Dynamic Recrystallization in a Ti Modified Austenitic Stainless Steel during High Strain Rate Deformation, Mater. Manuf. Process., 2010, 25(1–3), p 54–59. https://doi.org/10.1080/10426910903162985

    Article  CAS  Google Scholar 

  35. D.-G. He, Y.C. Lin, J. Chen, D.-D. Chen, J. Huang, Y. Tang, and M.-S. Chen, Microstructural Evolution and Support Vector Regression Model for an Aged Ni-Based Superalloy During Two-Stage Hot Forming with Stepped Strain Rates, Mater. Des., 2018, 154, p 51–62. https://doi.org/10.1016/j.matdes.2018.05.022

    Article  CAS  Google Scholar 

  36. S. Roy, S. Biswas, K. Arun Babu, and S. Mandal, Phenomenological Constitutive Modeling of High-Temperature Flow Behavior Incorporating Individual and Coupled Effects of Processing Parameters in Super-Austenitic Stainless Steel, J. Mater. Eng. Perform., 2018, 27(7), p 3762–3772. https://doi.org/10.1007/s11665-018-3416-5

    Article  CAS  Google Scholar 

  37. Y.-X. Liu, Y.C. Lin, and Y. Zhou, 2D Cellular Automaton Simulation of Hot Deformation Behavior in a Ni-Based Superalloy Under Varying Thermal-Mechanical Conditions, Mater. Sci. Eng., A, 2017, 691, p 88–99. https://doi.org/10.1016/j.msea.2017.03.039

    Article  CAS  Google Scholar 

  38. Z. Yanushkevich, A. Belyakov, and R. Kaibyshev, Microstructural Evolution of a 304-Type Austenitic Stainless Steel during Rolling at Temperatures of 773-1273 K, Acta Mater., 2015, 82, p 244–254. https://doi.org/10.1016/j.actamat.2014.09.023

    Article  CAS  Google Scholar 

  39. J. Li, G. Zhao, L. Ma, H. Chen, H. Li, Q. Huang, and W. Zhang, Hot Deformation Behavior and Microstructural Evolution of Antibacterial Austenitic Stainless Steel Containing 3.60% Cu, J. Mater. Eng. Perform., 2018, 27(4), p 1847–1853. https://doi.org/10.1007/s11665-018-3274-1

    Article  CAS  Google Scholar 

  40. S. Du, S. Chen, and J. Song, Dynamic Recrystallization Kinetics and Microstructural Evolution for LZ50 Steel During Hot Deformation, J. Mater. Eng. Perform., 2016, 25(9), p 3646–3655. https://doi.org/10.1007/s11665-016-2200-7

    Article  CAS  Google Scholar 

  41. N. Haghdadi, P. Cizek, H. Beladi, and P.D. Hodgson, A Novel High-Strain-Rate Ferrite Dynamic Softening Mechanism Facilitated by the Interphase in the Austenite/Ferrite Microstructure, Acta Mater., 2017, 126, p 44–57. https://doi.org/10.1016/j.actamat.2016.12.045

    Article  CAS  Google Scholar 

  42. D.-X. Wen, Y.C. Lin, and Y. Zhou, A New Dynamic Recrystallization Kinetics Model for a Nb Containing Ni-Fe-Cr-Base Superalloy Considering Influences of Initial δ Phase, Vacuum, 2017, 141, p 316–327. https://doi.org/10.1016/j.vacuum.2017.04.030

    Article  CAS  Google Scholar 

  43. S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N), Metall. Mater. Trans. A, 2014, 45(12), p 5645–5656. https://doi.org/10.1007/s11661-014-2480-1

    Article  CAS  Google Scholar 

  44. M.C. Mataya and V.E. Sackschewsky, Effect of Internal Heating during Hot Compression on the Stress-Strain Behavior of Alloy 304L, Metall. Mater. Trans. A, 1994, 25(12), p 2737–2752. https://doi.org/10.1007/BF02649226

    Article  Google Scholar 

  45. H. Jiang, J. Dong, M. Zhang, L. Zheng, and Z. Yao, Hot Deformation Characteristics of Alloy 617B Nickel-Based Superalloy: A Study Using Processing Map, J. Alloys Compd., 2015, 647, p 338–350. https://doi.org/10.1016/j.jallcom.2015.05.192

    Article  CAS  Google Scholar 

  46. C. Zener and J.H. Hollomon, Effect of Strain Rate upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32. https://doi.org/10.1063/1.1707363

    Article  Google Scholar 

  47. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138. https://doi.org/10.1016/0001-6160(66)90207-0

    Article  CAS  Google Scholar 

  48. K. Arun Babu and S. Mandal, Regression Based Novel Constitutive Analyses to Predict High Temperature Flow Behavior in Super Austenitic Stainless Steel, Mater. Sci. Eng., A, 2017, 703, p 187–195. https://doi.org/10.1016/j.msea.2017.07.035

    Article  CAS  Google Scholar 

  49. H.J. McQueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng., A, 2002, 322(1), p 43–63. https://doi.org/10.1016/S0921-5093(01)01117-0

    Article  Google Scholar 

  50. A. Momeni, The Physical Interpretation of the Activation Energy for Hot Deformation of Ni and Ni–30Cu Alloys, J. Mater. Res., 2016, 31(08), p 1077–1084. https://doi.org/10.1557/jmr.2016.81

    Article  CAS  Google Scholar 

  51. A. Mohamadizadeh, A. Zarei-Hanzaki, and H.R. Abedi, Modified Constitutive Analysis and Activation Energy Evolution of a Low-Density Steel Considering the Effects of Deformation Parameters, Mech. Mater., 2016, 95, p 60–70. https://doi.org/10.1016/j.mechmat.2016.01.001

    Article  Google Scholar 

  52. K. Arun Babu, S. Mandal, A. Kumar, C.N. Athreya, B. de Boer, and V.S. Sarma, Characterization of Hot Deformation Behavior of Alloy 617 through Kinetic Analysis, Dynamic Material Modeling and Microstructural Studies, Mater. Sci. Eng., A, 2016, 664, p 177–187. https://doi.org/10.1016/j.msea.2016.04.004

    Article  CAS  Google Scholar 

  53. S.F. Medina, A. Quispe, and M. Gómez, Strain Induced Precipitation Effect on Austenite Static Recrystallisation in Microalloyed Steels, Mater. Sci. Technol., 2003, 19(1), p 99–108. https://doi.org/10.1179/026708303225008662

    Article  CAS  Google Scholar 

  54. X. Yang, L. Zhang, Y. Shi, S. Yu, and W. Hua, Effect Of Niobium Addition On Hot Deformation Behaviors Of Medium Carbon Ultra-High Strength Steels, J. Wuhan Univ. Technol., 2017, 32(1), p 162–172. https://doi.org/10.1007/s11595-017-1575-0

    Article  CAS  Google Scholar 

  55. Y.V.R.K. Prasad, Processing Maps: A Status Report, J. Mater. Eng. Perform., 2003, 12(6), p 638–645. https://doi.org/10.1361/105994903322692420

    Article  CAS  Google Scholar 

  56. B. Kishor, G.P. Chaudhari, and S.K. Nath, Hot Deformation Characteristics of 13Cr-4Ni Stainless Steel Using Constitutive Equation and Processing Map, J. Mater. Eng. Perform., 2016, 25(7), p 2651–2660. https://doi.org/10.1007/s11665-016-2159-4

    Article  CAS  Google Scholar 

  57. B. Guo, H. Ji, X. Liu, L. Gao, R. Dong, M. Jin, and Q. Zhang, Research on Flow Stress During Hot Deformation Process and Processing Map for 316LN Austenitic Stainless Steel, J. Mater. Eng. Perform., 2012, 21(7), p 1455–1461. https://doi.org/10.1007/s11665-011-0031-0

    Article  CAS  Google Scholar 

  58. M. Shirdel, H. Mirzadeh, and M.H. Parsa, Abnormal Grain Growth in AISI, 304L Stainless Steel, Mater. Charact., 2014, 97, p 11–17. https://doi.org/10.1016/j.matchar.2014.08.022

    Article  CAS  Google Scholar 

  59. Y.C. Lin, D.G. He, M.S. Chen, X.M. Chen, C.Y. Zhao, X. Ma, and Z.L. Long, EBSD Analysis of Evolution of Dynamic Recrystallization Grains and δ Phase in a Nickel-Based Superalloy during Hot Compressive Deformation, Mater. Des., 2016, 97, p 13–24. https://doi.org/10.1016/j.matdes.2016.02.052

    Article  CAS  Google Scholar 

  60. X.-M. Chen, Y.C. Lin, D.-X. Wen, J.-L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy during Hot Deformation, Mater. Des., 2014, 57, p 568–577. https://doi.org/10.1016/j.matdes.2013.12.072

    Article  CAS  Google Scholar 

  61. Y.H. Mozumder, K. Arun Babu, R. Saha, and S. Mandal, Flow Characteristics and Hot Workability Studies of a Ni-Containing Fe-Mn-Al-C Lightweight Duplex Steel, Mater. Charact., 2018, 146, p 1–14. https://doi.org/10.1016/j.matchar.2018.09.036

    Article  CAS  Google Scholar 

  62. S.Z. Najafi, A. Momeni, and H.R. Jafarian, Flow Curves and Microstructure of K107 Tool Steel Subjected to Compression Tests at Elevated Temperatures, Mater. Sci. Eng., A, 2018, 732, p 78–90. https://doi.org/10.1016/j.msea.2018.06.106

    Article  CAS  Google Scholar 

  63. D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, and V.S. Sarma, New Insights into the Relationship between Dynamic Softening Phenomena and Efficiency of Hot Working Domains of a Nitrogen Enhanced 316L(N) Stainless Steel, Mater. Sci. Eng., A, 2014, 598, p 368–375. https://doi.org/10.1016/j.msea.2013.12.105

    Article  CAS  Google Scholar 

  64. J. Li, Y. Li, C. Huang, T. Suo, and Q. Wei, On Adiabatic Shear Localization in Nanostructured Face-Centered Cubic Alloys with Different Stacking Fault Energies, Acta Mater., 2017, 141, p 163–182. https://doi.org/10.1016/j.actamat.2017.09.022

    Article  CAS  Google Scholar 

  65. R. Mohammadzadeh, A. Akbari, and M. Mohammadzadeh, Impact Toughness Properties of Nickel- and Manganese-Free High Nitrogen Austenitic Stainless Steels, Metall. Mater. Trans. A, 2016, 47(12), p 6032–6041. https://doi.org/10.1007/s11661-016-3742-x

    Article  CAS  Google Scholar 

  66. F. Xiao, Y. Cao, G. Qiao, X. Zhang, and B. Liao, Effect of Nb Solute and NbC Precipitates on Dynamic or Static Recrystallization in Nb Steels, J. Iron. Steel Res. Int., 2012, 19(11), p 52–56. https://doi.org/10.1016/S1006-706X(13)60020-5

    Article  CAS  Google Scholar 

  67. J.R. Wilcox and R.W.K. Honeycombe, Effect of Precipitation on Hot Ductility of Niobium and Aluminium Microalloyed Steels, Mater. Sci. Technol., 1987, 3(10), p 849–854. https://doi.org/10.1179/mst.1987.3.10.849

    Article  CAS  Google Scholar 

  68. S.-L. Jeng, H.-T. Lee, J.-Y. Huang, and R.-C. Kuo, Effects of Nb on the Microstructure and Elevated-Temperature Mechanical Properties of Alloy 690-SUS 304L Dissimilar Welds, Mater. Trans., 2008, 49(6), p 1270–1277. https://doi.org/10.2320/matertrans.mra2008008

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Prof. V.S. Sarma, Dept. of Metallurgical and Metallurgical Engineering, IIT Madras, Chennai for providing the facility for performing the isothermal hot compression tests in Gleeble 3800.

Data Availability Statement

The raw data related to this manuscript would be made available on request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Arun Babu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun Babu, K., Mozumder, Y.H., Saha, R. et al. A Systematic Assessment of Various Stability/Instability Criteria in Predicting the Hot Deformation-Related Instabilities in Super-304H Stainless Steels. J. of Materi Eng and Perform 28, 4718–4730 (2019). https://doi.org/10.1007/s11665-019-04238-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04238-1

Keywords

Navigation