Skip to main content

Advertisement

Log in

Experimental and Numerical Analysis of Residual Stresses in Similar and Dissimilar Welds of T91 and Super304H Steel Tubes

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Residual stress distribution and its magnitude varies across the weldment, contributing to many catastrophic failures. Moreover, it is challenging to reliably measure residual stresses, considering a particular technique. Therefore, the present investigation aims to examine residual stresses in similar (T91-T91) and dissimilar (T91-Super304H) welds before and after post-weld heat treatments (PWHT), using non-destructive methods (sin2ψ and cos α) and SYSWELDS simulations. For a similar weld, the peak tensile residual stresses near to fusion line reached ~ 238 MPa (as per sin2ψ method) and ~ 258 MPa (as per cos α method), which is ~ 48% of yield stress (520 MPa) of T91 steel. Alternatively, for the case of dissimilar welds, peak tensile residual stresses of ~ 518 MPa and peak compressive residual stresses of ~ 290 MPa were observed at the fusion line of the T91 side and Super304H side, respectively. Dissimilar welds show relatively high residual stresses with significant deviation across weldment due to varying thermal coefficients of expansion/contraction resulting from dissimilar metal joints. Hence, PWHTs were performed to decrease the magnitude of peak residual stresses and their deviation across weldment to enhance the life of welded joints. For instance, the peak tensile residual stresses decreased from ~ 258 to ~ 120 MPa after 775 °C—30 min PWHT condition in similar welds. Similarly, for dissimilar welds, post-weld normalizing and tempering (PWNT) at 1050 °C—30 min followed by 760 °C—60 min condition was found to decrease the residual stresses from ~ 518 to ~ 70 MPa, which is a significant reduction achieved due to austenitizing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.L. Klueh, Elevated Temperature Ferritic and Martensitic Steels and Their Application to Future Nuclear Reactors, Int. Mater. Rev., 2005, 50, p 287–310. https://doi.org/10.1179/174328005X41140

    Article  CAS  Google Scholar 

  2. A. Sauraw, A.K. Sharma, D. Fydrych, S. Sirohi, A. Gupta, A. Świerczyńska, C. Pandey, and G. Rogalski, Study on Microstructural Characterization, Mechanical Properties and Residual Stress of Gtaw Dissimilar Joints of p91 and p22 Steels, Materials (Basel)., 2021 https://doi.org/10.3390/ma14216591

    Article  PubMed  PubMed Central  Google Scholar 

  3. J. Shen, P. Agrawal, T.A. Rodrigues, J.G. Lopes, N. Schell, Z. Zeng, R.S. Mishra, and J.P. Oliveira, Gas Tungsten Arc Welding of As-cast AlCoCrFeNi2.1 Eutectic High Entropy Alloy, Mater. Des., 2022, 223, p 111176. https://doi.org/10.1016/j.matdes.2022.111176

    Article  CAS  Google Scholar 

  4. J. Shen, P. Agrawal, T.A. Rodrigues, J.G. Lopes, N. Schell, J. He, Z. Zeng, R.S. Mishra, and J.P. Oliveira, Microstructure Evolution and Mechanical Properties in a Gas Tungsten Arc Welded Fe42Mn28Co10Cr15Si5 Metastable High Entropy Alloy, Mater. Sci. Eng. A., 2023, 867, p 144722. https://doi.org/10.1016/j.msea.2023.144722

    Article  CAS  Google Scholar 

  5. J.G. Lopes, P. Rocha, D.A. Santana, J. Shen, E. Maawad, N. Schell, J.P. Oliveira, Impact of Arc‐Based Welding on the Microstructure Evolution and Mechanical Properties in Newly Developed Cr29. 7Co29. 7Ni35. 4Al4Ti1. 2 Multi‐principal Element alloy. Adv. Eng. Mater. (2023)

  6. H.T. Kang, Y.L. Lee, and X.J. Sun, Effects of Residual Stress and Heat Treatment on Fatigue Strength of Weldments, Mater. Sci. Eng. A., 2008, 497, p 37–43. https://doi.org/10.1016/j.msea.2008.06.011

    Article  CAS  Google Scholar 

  7. Y.C. Lin and S.C. Chen, Effect of Residual Stress on Thermal Fatigue in a Type 420 Martensitic Stainless Steel Weldment, J. Mater. Process. Technol., 2003, 138, p 22–27. https://doi.org/10.1016/S0924-0136(03)00043-8

    Article  CAS  Google Scholar 

  8. D. Deng, Y. Zhou, T. Bi, and X. Liu, Experimental and Numerical Investigations of Welding Distortion Induced by CO2 Gas Arc Welding in Thin-plate Bead-on Joints, Mater. Des., 2013, 52, p 720–729. https://doi.org/10.1016/j.matdes.2013.06.013

    Article  CAS  Google Scholar 

  9. J.B. Ju, J.S. Lee, J.I. Jang, W.S. Kim, and D. Kwon, Determination of Welding Residual Stress Distribution in API X65 Pipeline Using a Modified Magnetic Barkhausen Noise Method, Int. J. Press. Vessel. Pip., 2003, 80, p 641–646. https://doi.org/10.1016/S0308-0161(03)00131-5

    Article  CAS  Google Scholar 

  10. S. Paddea, J.A. Francis, A.M. Paradowska, P.J. Bouchard, and I.A. Shibli, Residual Stress Distribution in a P91 Steel-pipe Girth Weld Before and After Post Weld Heat Treatment, Mater. Sci. Eng. A., 2012, 534, p 663–672. https://doi.org/10.1016/j.msea.2011.12.024

    Article  CAS  Google Scholar 

  11. V.I. Monin, T. Gurova, X. Castello, and S.F. Estefen, Analysis of Residual Stress State in Welded Steel Plates by X-ray Diffraction Method, Rev. Adv. Mater. Sci., 2009, 20, p 172–175.

    Google Scholar 

  12. A. Yaghi, T.H. Hyde, A.A. Becker, W. Sun, and J.A. Williams, Residual Stress Simulation in Thin and Thick-walled Stainless Steel Pipe Welds Including Pipe Diameter Effects, Int. J. Press. Vessel. Pip., 2006, 83, p 864–874. https://doi.org/10.1016/j.ijpvp.2006.08.014

    Article  Google Scholar 

  13. J.A. Francis, M. Turski, and P.J. Withers, Measured Residual Stress Distributions for Low and High Heat Input Single Weld Beads Deposited on to SA508 Steel, Mater. Sci. Technol., 2009, 25, p 325–334. https://doi.org/10.1179/174328408X372074

    Article  CAS  Google Scholar 

  14. J. Shen, R. Gonçalves, Y.T. Choi, J.G. Lopes, J. Yang, N. Schell, H.S. Kim, and J.P. Oliveira, Microstructure and Mechanical Properties of Gas Metal Arc Welded CoCrFeMnNi Joints Using a 308 Stainless Steel Filler Metal, Scr. Mater., 2023, 222, p 115053. https://doi.org/10.1016/j.scriptamat.2022.115053

    Article  CAS  Google Scholar 

  15. J. Shen, R. Gonçalves, Y.T. Choi, J.G. Lopes, J. Yang, N. Schell, H.S. Kim, and J.P. Oliveira, Microstructure and Mechanical Properties of Gas Metal Arc Welded CoCrFeMnNi Joints Using a 410 Stainless Steel Filler Metal, Mater. Sci. Eng. A., 2022, 857, p 144025. https://doi.org/10.1016/j.msea.2022.144025

    Article  CAS  Google Scholar 

  16. D. Akbari and I. Sattari-Far, Effect of the Welding Heat Input on Residual Stresses in Butt-welds of Dissimilar Pipe Joints, Int. J. Press. Vessel. Pip., 2009, 86, p 769–776. https://doi.org/10.1016/j.ijpvp.2009.07.005

    Article  CAS  Google Scholar 

  17. K. Tanaka, K. Suzuki, Y. Akiniwa, Evaluation of Residual Stresses by X-ray Diffraction, Yokendo (in Japanese) (2006)

  18. Y. Maruyama, T. Miyazaki, and T. Sasaki, Development and Validation of an X-ray Stress Measurement Device Using an Imaging Plate Suitaible for the cosα Method, J. Soc. Mater. Sci. Japan., 2015, 64, p 560–566. https://doi.org/10.1179/1362171813Y.0000000132

    Article  CAS  Google Scholar 

  19. S. Kumar, R. Awasthi, C.S. Viswanadham, K. Bhanumurthy, and G.K. Dey, Thermo-metallurgical and Thermo-mechanical Computations for Laser Welded Joint in 9Cr-1Mo(V, Nb) Ferritic/Martensitic Steel, Mater. Des., 2014, 59, p 211–220. https://doi.org/10.1016/j.matdes.2014.02.046

    Article  CAS  Google Scholar 

  20. R.P. Mahto, R. Kumar, and S.K. Pal, Characterizations of Weld Defects, Intermetallic Compounds and Mechanical Properties of Friction Stir Lap Welded Dissimilar Alloys, Mater. Charact., 2020, 160, p 110115. https://doi.org/10.1016/j.matchar.2019.110115

    Article  CAS  Google Scholar 

  21. C. Pandey, M. Mohan Mahapatra, P. Kumar, J.G. Thakre, and N. Saini, Role of Evolving Microstructure on the Mechanical Behaviour of P92 Steel Welded Joint in As-welded and Post Weld Heat Treated State, J. Mater. Process. Technol., 2019, 263, p 241–255. https://doi.org/10.1016/j.jmatprotec.2018.08.032

    Article  CAS  Google Scholar 

  22. R. Kumar, A. Varma, Y.R. Kumar, H. Vashishtha, J. Jain, and S. Neelakantan, Optimization of Post-weld Heat Treatment Condition of Arc-welded T91 Steel Tubes, Int. J. Press. Vessel. Pip., 2020, 188, p 104213. https://doi.org/10.1016/j.ijpvp.2020.104213

    Article  CAS  Google Scholar 

  23. Z. Liang, Y. Gui, and Q. Zhao, Investigation of Microstructures and Mechanical Properties of T92 Martensitic Steel/Super304 Austenitic Steel Weld Joints Made with Three Welding Consumables, Arch. Metall. Mater., 2018, 63, p 1249–1256. https://doi.org/10.24425/123798

    Article  CAS  Google Scholar 

  24. R. Kumar, A. Varma, Y.R. Kumar, S. Neelakantan, and J. Jain, Enhancement of Mechanical Properties Through Modified Post-weld Heat Treatment Processes of T91 and Super304H Dissimilar Welded Joint, J. Manuf. Process., 2022, 78, p 59–70. https://doi.org/10.1016/j.jmapro.2022.04.008

    Article  Google Scholar 

  25. ESI Group, SYSWELD 2010 reference manual. Digital Version, 4 (2010)

  26. C. Pandey, M.M. Mahapatra, P. Kumar, and N. Saini, Effect of Normalization and Tempering on Microstructure and Mechanical Properties of V-groove and Narrow-groove P91 Pipe Weldments, Mater. Sci. Eng. A., 2017, 685, p 39–49. https://doi.org/10.1016/j.msea.2016.12.079

    Article  CAS  Google Scholar 

  27. M.Y. Kim, S.C. Kwak, I.S. Choi, Y.K. Lee, J.Y. Suh, E. Fleury, W.S. Jung, and T.H. Son, High-temperature Tensile and Creep Deformation of Cross-Weld Specimens of Weld Joint between T92 Martensitic and Super304H Austenitic Steels, Mater. Charact., 2014, 97, p 161–168. https://doi.org/10.1016/j.matchar.2014.09.011

    Article  CAS  Google Scholar 

  28. R. Kumar, A. Varma, Y.R. Kumar, J. Jain, and S. Neelakantan, Microstructure Anomaly Upon High Temperature Exposure and Its Influence on the Mechanical Properties of a Modified 9Cr-1Mo Steel Weld, Mater. Charact., 2022 https://doi.org/10.1016/j.matchar.2022.111937

    Article  Google Scholar 

  29. R. Kumar, A. Gokhale, A. Varma, Y.R. Kumar, S. Neelakantan, and J. Jain, Role of Nb (C, N) and Cr Carbides on the Fracture Behaviour of Super304H Steel Using In-situ Tensile Studies, Mater. Lett., 2023, 351, p 135107. https://doi.org/10.1016/j.matlet.2023.135107

    Article  CAS  Google Scholar 

  30. L. Lars-Erik, Computational Welding Mechanics: Thermomechanical and Microstructural Simulation, Woodhead Publishing Limited, Cambridge, 2007.

    Google Scholar 

  31. J. Goldak, A. Chakravati, and M. Bibly, A New Finite Element Model for Welding Heat Sources, Metall. Trans. B., 1984, 15, p 299–305. https://doi.org/10.1021/ac60352a844

    Article  Google Scholar 

  32. J. Moravec, Influence of Welding Parameters on Weld Pool’s Geometry in Shielding Gas Welding. Pollypress, Lib. (2011)

  33. D. Kollár, B. Kövesdi, and J. Néző, Numerical Simulation of Welding Process: Application in Buckling Analysis, Period. Polytech. Civ. Eng., 2017, 61, p 98–109. https://doi.org/10.3311/PPci.9257

    Article  Google Scholar 

  34. S.H. Kim, J.B. Kim, and W.J. Lee, Numerical Prediction and Neutron Diffraction Measurement of the Residual Stresses for a Modified 9Cr-1Mo Steel Weld, J. Mater. Process. Technol., 2009, 209, p 3905–3913. https://doi.org/10.1016/j.jmatprotec.2008.09.012

    Article  CAS  Google Scholar 

  35. H.H. Lai and W. Wu, Practical Examination of the Welding Residual Stress in View of Low-carbon Steel Welds, J. Mater. Res. Technol., 2020, 9, p 2717–2726. https://doi.org/10.1016/j.jmrt.2020.01.004

    Article  CAS  Google Scholar 

  36. N.S. Rossini, M. Dassisti, K.Y. Benyounis, and A.G. Olabi, Methods of Measuring Residual Stresses in Components, Mater. Des., 2012, 35, p 572–588. https://doi.org/10.1016/j.matdes.2011.08.022

    Article  Google Scholar 

  37. K.A. Venkata, S. Kumar, H.C. Dey, D.J. Smith, P.J. Bouchard, and C.E. Truman, Study on the Effect of Post Weld Heat Treatment Parameters on the Relaxation of Welding Residual Stresses in Electron Beam Welded P91 Steel Plates, Procedia Eng., 2014, 86, p 223–233. https://doi.org/10.1016/j.proeng.2014.11.032

    Article  CAS  Google Scholar 

  38. M. Belassel, J. Pineault, N. Caratanasov, M. Brauss, Comparison of Residual Stress Measurement Techniques and Implementation Using x-ray diffraction., Eur. Conf. Residual Stress. 43 (2016)

  39. M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shaackleton, L. Suominen, Determination of Residual Stresses by X-ray Diffraction - Issue 2, (2005) 31.

Download references

Acknowledgments

This project has been sponsored by NTPC NETRA. The authors also acknowledge the research infrastructure support of the department of materials science and engineering and central research facilities of IIT Delhi. The valuable discussion and support of Prof. S. Aravindan (Mechanical department, IIT Delhi) is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suresh Neelakantan or Jayant Jain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical issue of the Journal of Materials Engineering and Performance on Residual Stress Analysis: Measurement, Effects, and Control. The issue was organized by Rajan Bhambroo, Tenneco, Inc.; Lesley Frame, University of Connecticut; Andrew Payzant, Oak Ridge National Laboratory; and James Pineault, Proto Manufacturing on behalf of the ASM Residual Stress Technical Committee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Halder, P., Amrithalingam, M. et al. Experimental and Numerical Analysis of Residual Stresses in Similar and Dissimilar Welds of T91 and Super304H Steel Tubes. J. of Materi Eng and Perform 33, 3722–3730 (2024). https://doi.org/10.1007/s11665-023-08703-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08703-w

Keywords

Navigation