Skip to main content
Log in

Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The temperature change due to the conversion of mechanical deformation to internal heat and its effect on the as-measured stress-strain behavior of alloy 304L was investigated by means of initially isothermal (compression specimen, dies, and environment at same temperature at initiation of test), constant strain rate, uniaxial compression of laboratory-sized cylindrical specimens. Strain rate was varied in the range 0.01 to 1 s−1, where the thermal state of the test specimen varied from nearly isothermal to nearly adiabatic, respectively. Specimens were deformed in the temperature range of 750 °C to 1150 °C to a strain of 1. The change in specimen temperature with applied strain was calculatedvia finite-element analysis (FEA) from the asmeasured stress-strain data. Selected predictions were confirmed with embedded thermocouples to verify the model employed. Temperature was found to increase monotonically with strain at a strain rate of 1 s-1, consistent with what is theoretically expected for the adiabatic case. At the 0.1 and 0.01 s-1 rates, the sample temperature initially increased, peaked, and then decreased as the sample thinned and the contact area between the sample and the cooler dies increased. As-measured stress was corrected for softening associated with deformational heating by interpolation between the various instantaneous stress-temperature behaviors. The resulting isothermal flow data are compared to those predicted by a conventional method that employs an empirical estimate of the heat retention efficiency of the test specimen, assumed dependent on strain rate but independent of strain, to reduce the increase in temperature calculated for the adiabatic case. Differences between the calculated isothermal stress-strain data from the two methods are discussed. Values for the apparent activation energy of deformation and the strain to the peak in the flow curve, which is associated with the onset of dynamic recrystallization, determined from isothermal stress-strain data differed significantly from those obtained from the as-measured compression test data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kobayashi, S.I. Oh, and T. Altan:Metal Forming and the Finite-Element-Method, Oxford University Press, New York, NY, 1989.

    Google Scholar 

  2. C.R. Boer, N. Rebelo, H. Rydstad, and G. Schroder:Process Modelling of Metal Forming and Thermomechanical Treatment, Springer-Verlag, Heidelberg, 1986.

    Google Scholar 

  3. I. Haque, J.E. J ckson, Jr., T. Gangjee, and A. Raikar:J. Mater. Shaping Technol., 1987, vol. 5 (1), pp. 23–33.

    Google Scholar 

  4. K.J. Meltsner: inSimulation and Theory of Evolving Microstructures and Textures, M.P. Anderson and A. Rollet, eds., TMS, Warrendale, PA, 1990.

    Google Scholar 

  5. A.J.M. Shih and H.T.Y. Yang:Int. J. Numei, 1991, vol. 31, pp. 345–67.

    Article  Google Scholar 

  6. S.I. Oh, G.D. Lahoti, and T. Altan: inProcess Modeling Tools, Proc. Soc. for Metals Process Modeling Sessions, Materials and Processes Congress, 1980, ASM, Metals Park, OH, 1981, pp. 195–216.

    Google Scholar 

  7. S.L. Semiatin, G.D. Lahoti, and T. Altan: inProcess Modeling: Fundamentals and Applications to Metals, T. Altan, ed., ASM, Metals Park, OH, 1980, p. 387.

    Google Scholar 

  8. D.W. Livesey and C. M. Sellars:Mater. Sci. Technol., 1985, vol. 1, pp. 136–44.

    CAS  Google Scholar 

  9. J.R. Douglas and T. Altan:ASME Trans. J. Eng. Industry, 1975, Feb., p. 66.

  10. K.P. Rao, S.M. Doraivelu, and V. Gopinathan:J. Mech. Work. Technol., 1982, No. 6, pp. 63-88.

  11. V.M. Sample, G.L. Fitzsimons, and A.J. DeArdo:Acta Metall., 1987, vol. 35 (2), pp. 367–79.

    Article  CAS  Google Scholar 

  12. J.J. Jonas and T. Sakai: inDeformation Processing and Structure, G. Krauss, ed., ASM, Metals Park, OH, 1982, pp. 185–230.

    Google Scholar 

  13. J.J. Luton and C. M. Sellars:Acta Metall., 1969, vol. 17, pp. 1033–43.

    Article  CAS  Google Scholar 

  14. M.R. Staker and N.J. Grant:Mater. Sci. Eng., 1985, No. 75, pp. 137–50.

    Article  CAS  Google Scholar 

  15. V.M. Sample and L.A. Lalli:Mater. Sci. Technol, 1987, vol. 3, pp. 28–35.

    CAS  Google Scholar 

  16. R. Raj:Metall. Trans. A, 1981, vol. 12A, pp. 1089–97.

    Google Scholar 

  17. C. Gandhi:Metall. Trans. A, 1982, vol. 13A, pp. 1233–38.

    Google Scholar 

  18. W. Roberts, H. Boden, and B. Ahlblom:Met. Sci., 1979, Mar.–Apr., pp. 195–205.

  19. M.J. White and W.S. Owen:Metall. Trans. A, 1980, vol. 11A, pp. 597–604.

    CAS  Google Scholar 

  20. J.J. McQueen, G. Gurewitz, and S. Fulop:High Temp. Technol., 1983, Feb., pp. 131–38.

  21. L.A. Norstrom:Scand. J. Metall., 1977, vol. 6, pp. 269–276.

    CAS  Google Scholar 

  22. N. Cederblad and N.J. Grant:Metall. Trans. A, 1975, vol. 6A, pp. 1547–52.

    CAS  Google Scholar 

  23. W. Roberts and B. Ahlblom:Acta Metall., 1978, vol. 26, pp. 801–13.

    Article  CAS  Google Scholar 

  24. H.J. McQueen:Metall. Trans. A, 1977, vol. 8A, pp. 807–24.

    CAS  Google Scholar 

  25. A. Laasraoui and J.J. Jonas:Metall. Trans. A, 1991, vol. 22A, pp. 151–60.

    CAS  Google Scholar 

  26. A. Laasraoui and J.J. Jonas:Metall. Trans. A, 1991, vol. 22A, pp. 1545–58.

    CAS  Google Scholar 

  27. P. Dadras and J.F. Thomas, Jr.:Metall. Trans. A, 1981, vol. 12A, pp. 1867–73.

    Google Scholar 

  28. P.L. Charpentier, B.C. Stone, S.C. Ernst, and J.F. Thomas, Jr.:Metall. Trans. A, 1986, vol. 17A, pp. 2227–37.

    CAS  Google Scholar 

  29. J.F. Thomas, Jr. and R. Srinivasan: inComputer Simulation in Materials Science, R.J. Arsenault, J.R. Beeler, Jr., and D.M. Esterling, eds., ASM INTERNATIONAL, Metals Park, OH, 1988, pp. 269–90.

    Google Scholar 

  30. M.C. Mataya, E.L. Brown, and M.P. Riendeau:Metall. Trans. A, 1990, vol. 21A, pp. 1969–87.

    CAS  Google Scholar 

  31. P. Dadras:J. Eng. Mater. Technol., 1985, vol. 107, pp. 97–100.

    Article  Google Scholar 

  32. S.L. Semiatin and J.H. Holbrook:Metall. Trans. A, 1983, vol. 14A, pp. 1681–95.

    Google Scholar 

  33. M.C. Mataya and D.K. Matlock: inSuperalloy 718-Metallurgy and Applications, E. Loria, ed., TMS, Warrendale, PA, 1989, pp. 155–78.

    Google Scholar 

  34. W. Reiss and K. Pohlandt:Exp. Tech., 1986, Jan., pp. 20-24.

  35. M.J. Weis: Master’s Thesis, Colorado School of Mines, Golden, CO, 1987.

    Google Scholar 

  36. G.W. Rowe:An Introduction to the Principles of Metalworking, Edward Arnold, London, 1965, p. 245.

    Google Scholar 

  37. G.E. Dieter:Mechanical Metallurgy, 2nd ed., McGraw-Hill, Inc., New York, NY, 1976, pp. 72–102.

    Google Scholar 

  38. K.F. Kennedy and G.D. Lahoti: Battelle Columbus Laboratories, Columbus, OH, private communication, June 1981.

  39. D.R. Barraclough and C.M. Sellars:Met. Sci., 1979, Mar.–Apr., pp. 257–67.

  40. H. Suzuki, Y. Hashizume, Y. Yabuki, Y. Ichihara, S. Nakajima, and K. Kenmochi:Report of the Institute of Industrial Science of the University of Tokyo, 1968, vol. 18 (3), pp. 1–102.

    Google Scholar 

  41. C. M. Sellars:Proc. Conf. on Hot Working and Forming Processes, Sheffield, July 1979, Metals Society, London, 1980, pp. 3–15.

    Google Scholar 

  42. J.J. Jonas and H.J. Mcqueen:Treatise on Materials Science and Technology: Plastic Deformation of Materials, R.J. Arsenault, ed., Academic Press, New York, NY, 1975, vol. 6, pp. 394–490.

    Google Scholar 

  43. C. Zener and J.H. Hollomon:J. Appl. Phys., 1944, vol. 15, pp. 22–31.

    Article  Google Scholar 

  44. O.D. Sherby and P.M. Burke: inProgress in Materials Science, B. Chalmers and W. Hume-Rothery, eds., Pergamon Press, London, 1968, vol. 13, pp. 325–53.

    Google Scholar 

  45. H. Luthy, A.K. Miller, and O.D. Sherby:Acta Metall, 1980, vol. 28, pp. 169–78.

    Article  CAS  Google Scholar 

  46. H.J. McQueen:J. Met., 1968, Apr., pp. 31-38.

  47. A.A. Afonja:Mater. Sci. Eng., 1982, No. 54, pp. 257-63.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Senior Systems Engineer with EG&G Rocky Flats, Inc., is retired.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mataya, M.C., Sackschewsky, V.E. Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L. Metall Mater Trans A 25, 2737–2752 (1994). https://doi.org/10.1007/BF02649226

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649226

Keywords

Navigation