Skip to main content
Log in

Wear-Resistant Al/SiC-Gr Hybrid Metal Matrix Composite Fabricated by Multiple Annealing and Roll Bonding

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The wear-resistant Al/SiC-Gr hybrid composite with a good combination of strength and ductility is fabricated by multiple annealing and roll bonding. The challenge is that graphite acts as a soft lubricating material and prevents the bonding between the layers. In order to evaluate the bond strength, the peeling test is used after cold roll bonding of Al strips with and without the addition of particles under different conditions. Results show that the bond strength increases with increasing the reduction in thickness, decreasing Gr content and performing the post-rolling annealing. During the multiple annealing and roll bonding process, the tensile strength increases with the cost of a small decrease in elongation. A relatively uniform distribution of particles is achieved at the last stages of the process. The Al/SiC-Gr hybrid composite exhibits an improved wear resistance compared with the monolithic Al and Al/SiC composite produced under the same conditions. The conclusion is drawn that a good combination of wear and mechanical properties can be achieved in the hybrid composite that has less amount of Gr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.W. Kaczmar, K. Pietrzak, and W. Włosiński, The Production and Application of Metal Matrix Composite Materials, J. Mater. Process. Technol., 2000, 106(1-3), p 58–67

    Article  Google Scholar 

  2. D.B. Miracle, Metal Matrix Composites—From Science to Technological Significance, Compos. Sci. Technol., 2005, 65(15-16), p 2526–2540

    Article  CAS  Google Scholar 

  3. D.J. Lloyd, Particle Reinforced Aluminium and Magnesium Matrix Composites, Int. Mater. Rev., 1994, 39(1), p 1–23

    Article  CAS  Google Scholar 

  4. A. Dorri Moghadam, B.F. Schultz, J.B. Ferguson, E. Omrani, P.K. Rohatgi, and N. Gupta, Functional Metal Matrix Composites: Self-Lubricating, Self-healing, and Nanocomposites-An Outlook, JOM, 2014, 66(6), p 872–881

    Article  CAS  Google Scholar 

  5. S.V. Prasad and R. Asthana, Aluminum Metal-Matrix Composites for Automotive Applications: Tribological Considerations, Tribol. Lett., 2004, 17(3), p 445–453

    Article  CAS  Google Scholar 

  6. S.T. Mavhungu, E.T. Akinlabi, M.A. Onitiri, and F.M. Varachia, Aluminum Matrix Composites for Industrial Use: Advances and Trends, Procedia Manuf., 2017, 7, p 178–182

    Article  Google Scholar 

  7. N. Chawla and K.K. Chawla, Metal Matrix Composites, Springer, Berlin, 2006

    Google Scholar 

  8. A.P. Sannino and H.J. Rack, Dry Sliding Wear of Discontinuously Reinforced Aluminum Composites: Review and Discussion, Wear, 1995, 189(1-2), p 1–19

    Article  CAS  Google Scholar 

  9. L. Cao, Y. Wang, and C.K. Yao, The Wear Properties of an SiC-Whisker-Reinforced Aluminium Composite, Wear, 1990, 140(2), p 273–277

    Article  CAS  Google Scholar 

  10. S. Barnes and I.R. Pashby, Machining of Aluminium Based Metal Matrix Composites, Appl. Compos. Mater., 1995, 2(1), p 31–42

    Article  Google Scholar 

  11. E. Omrani, A.D. Moghadam, P.L. Menezes, and P.K. Rohatgi, Influences of Graphite Reinforcement on the Tribological Properties of Self-Lubricating Aluminum Matrix Composites for Green Tribology, Sustainability, and Energy Efficiency—A Review, Int. J. Adv. Manuf. Technol., 2016, 83(1), p 325–346

    Article  Google Scholar 

  12. J. Singh and A. Chauhan, Overview of Wear Performance of Aluminium Matrix Composites Reinforced with Ceramic Materials Under the Influence of Controllable Variables, Ceram. Int., 2016, 42(1, Part A), p 56–81

    Article  CAS  Google Scholar 

  13. J. Leng, L. Jiang, Q. Zhang, G. Wu, D. Sun, and Q. Zhou, Study of Machinable SiC/Gr/Al Composites, J. Mater. Sci., 2008, 43(19), p 6495–6499

    Article  CAS  Google Scholar 

  14. J. Singh, Fabrication Characteristics and Tribological Behavior of Al/SiC/Gr Hybrid Aluminum Matrix Composites: A Review, Friction, 2016, 4(3), p 191–207

    Article  CAS  Google Scholar 

  15. S. Basavarajappa, G. Chandramohan, K. Mukund, M. Ashwin, and M. Prabu, Dry Sliding Wear Behavior of Al 2219/SiCp-Gr Hybrid Metal Matrix Composites, J. Mater. Eng. Perform., 2006, 15(6), p 668–674

    Article  CAS  Google Scholar 

  16. A.M. Hassan, G.M. Tashtoush, and J.A. Al-Khalil, Effect of Graphite and/or Silicon Carbide Particles Addition on the Hardness and Surface Roughness of Al-4 wt.% Mg Alloy, J. Compos. Mater., 2007, 41(4), p 453–465

    Article  CAS  Google Scholar 

  17. J. Leng, G. Wu, Q. Zhou, Z. Dou, and X. Huang, Mechanical Properties of SiC/Gr/Al Composites Fabricated by Squeeze Casting Technology, Scr. Mater., 2008, 59(6), p 619–622

    Article  CAS  Google Scholar 

  18. M. Kok, Production and Mechanical Properties of Al2O3 Particle-Reinforced 2024 Aluminium Alloy Composites, J. Mater. Process. Technol., 2005, 161(3), p 381–387

    Article  CAS  Google Scholar 

  19. J. Hashim, L. Looney, and M.S.J. Hashmi, The Enhancement of Wettability of SiC Particles in Cast Aluminium Matrix Composites, J. Mater. Process. Technol., 2001, 119(1-3), p 329–335

    Article  CAS  Google Scholar 

  20. S. Simões, A.S. Ramos, F. Viana, O. Emadinia, M.T. Vieira, and M.F. Vieira, Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering, J. Mater. Eng. Perform., 2016, 25(10), p 4394–4401

    Article  Google Scholar 

  21. A. Shabani and M.R. Toroghinejad, Investigation of the Microstructure and the Mechanical Properties of Cu-NiC Composite Produced by Accumulative Roll Bonding and Coating Processes, J. Mater. Eng. Perform., 2015, 24(12), p 4746–4754

    Article  CAS  Google Scholar 

  22. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process, Scr. Mater., 1998, 39(9), p 1221–1227

    Article  CAS  Google Scholar 

  23. B.L. Li, N. Tsuji, and N. Kamikawa, Microstructure Homogeneity in Various Metallic Materials Heavily Deformed by Accumulative Roll-Bonding, Mater. Sci. Eng. A, 2006, 423(1-2), p 331–342

    Article  Google Scholar 

  24. E. Bagherpour, M. Reihanian, and H. Miyamoto, Tailoring Particle Distribution Non-Uniformity and Grain Refinement In Nanostructured Metal Matrix Composites Fabricated by Severe Plastic Deformation (SPD): A Correlation with Flow Stress, J. Mater. Sci., 2017, 52(6), p 3436–3446

    Article  CAS  Google Scholar 

  25. M. Alizadeh and M.H. Paydar, Fabrication of Nanostructure Al/SiCP Composite by Accumulative Roll-Bonding (ARB) Process, J. Alloy. Compd., 2010, 492(1-2), p 231–235

    Article  CAS  Google Scholar 

  26. M. Reihanian, E. Bagherpour, and M.H. Paydar, On the Achievement of Uniform Particle Distribution in Metal Matrix Composites Fabricated by Accumulative Roll Bonding, Mater. Lett., 2013, 91, p 59–62

    Article  CAS  Google Scholar 

  27. M. Alizadeh and M.H. Paydar, Fabrication of Al/SiCP Composite Strips by Repeated Roll-Bonding (RRB) Process, J. Alloy. Compd., 2009, 477(1-2), p 811–816

    Article  CAS  Google Scholar 

  28. M. Alizadeh, Strengthening Mechanisms in Particulate Al/B4C Composites Produced by Repeated Roll Bonding Process, J. Alloy. Compd., 2011, 509(5), p 2243–2247

    Article  CAS  Google Scholar 

  29. R. Jamaati, M.R. Toroghinejad, and A. Najafizadeh, An Alternative Method of Processing MMCs by CAR Process, Mater. Sci. Eng. a-Struct. Mater. Prop. Microstruct. Process., 2010, 527(10-11), p 2720–2724

    Article  Google Scholar 

  30. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand, CAR Process: A Technique for Significant Enhancement of As-Cast MMC Properties, Mater. Charact., 2011, 62(12), p 1228–1234

    Article  CAS  Google Scholar 

  31. S. Amirkhanlou, R. Jamaati, B. Niroumand, and M.R. Toroghinejad, Fabrication and Characterization of Al/SiCp Composites by CAR Process, Mater. Sci. Eng. A, 2011, 528(13-14), p 4462–4467

    Article  Google Scholar 

  32. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand, Comparison of the Microstructure and Mechanical Properties of As-Cast A356/SiC MMC Processed by ARB and CAR Methods, J. Mater. Eng. Perform., 2012, 21(7), p 1249–1253

    Article  CAS  Google Scholar 

  33. M. Reihanian, F.K. Hadadian, and M.H. Paydar, Fabrication of Al–2 vol.% Al2O3/SiC Hybrid Composite via Accumulative Roll Bonding (ARB): an Investigation of the Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2014, 607, p 188–196

    Article  CAS  Google Scholar 

  34. M. Alizadeh, H.A. Beni, M. Ghaffari, and R. Amini, Properties of High Specific Strength Al–4 wt.% Al2O3/B4C Nano-Composite Produced by Accumulative Roll Bonding Process, Mater. Des., 2013, 50, p 427–432

    Article  CAS  Google Scholar 

  35. A. Fattah-alhosseini, M. Naseri, and M.H. Alemi, Corrosion Behavior Assessment of Finely Dispersed and Highly Uniform Al/B4C/SiC Hybrid Composite Fabricated via Accumulative Roll Bonding Process, J. Manuf. Process., 2016, 22, p 120–126

    Article  Google Scholar 

  36. M. Shamanian, M. Mohammadnezhad, and J. Szpunar, Production of High-Strength Al/Al2O3/WC Composite by Accumulative Roll Bonding, J. Mater. Eng. Perform., 2014, 23(9), p 3152–3158

    Article  CAS  Google Scholar 

  37. H. Farajzadeh Dehkordi, M.R. Toroghinejad, and K. Raeissi, Fabrication of Al/Al2O3/TiC Hybrid Composite by Anodizing and Accumulative Roll Bonding Processes and Investigation of its Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2013, 585, p 460–467

    Article  CAS  Google Scholar 

  38. M. Reihanian, S. Fayezipour, and S.M. Lari, Baghal, Nanostructured Al/SiC-Graphite Composites Produced by Accumulative Roll Bonding: Role of Graphite on Microstructure, Wear and Tensile Behavior, J. Mater. Eng. Perform., 2017, 26(4), p 1908–1919

    Article  CAS  Google Scholar 

  39. V. Yousefi Mehr, M.R. Toroghinejad, and A. Rezaeian, The Effects of Oxide Film and Annealing Treatment on the Bond Strength of Al-Cu Strips in Cold Roll Bonding Process, Mater. Des., 2014, 53, p 174–181

    Article  CAS  Google Scholar 

  40. L. Li, K. Nagai, and F. Yin, Progress in Cold Roll Bonding of Metals, Sci. Technol. Adv. Mater., 2008, 9(2), p 023001

    Article  Google Scholar 

  41. R. Jamaati and M.R. Toroghinejad, Cold Roll Bonding Bond Strengths: Review, Mater. Sci. Technol., 2011, 27(7), p 1101–1108

    Article  CAS  Google Scholar 

  42. N. Bay, C. Clemensen, O. Juelstorp, and T. Wanheim, Bond Strength in Cold Roll Bonding, CIRP Ann.—Manuf. Technol., 1985, 34(1), p 221–224

    Article  Google Scholar 

  43. M.Z. Quadir, A. Wolz, M. Hoffman, and M. Ferry, Influence of Processing Parameters on the Bond Toughness of Roll-Bonded Aluminium Strip, Scr. Mater., 2008, 58(11), p 959–962

    Article  CAS  Google Scholar 

  44. M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, Cambridge University Press, Cambridge, 2009

    Google Scholar 

  45. T.H. Courtney, Mechanical Behavior of Materials, McGraw Hill Custom Publisher, New York, 2000

    Google Scholar 

  46. M. Naseri, M. Reihanian, and E. Borhani, Bonding Behavior During Cold Roll-Cladding of Tri-Layered Al/brass/Al Composite, J. Manuf. Process., 2016, 24(Part 1), p 125–137

    Article  Google Scholar 

  47. R. Jamaati and M.R. Toroghinejad, Effect of Friction, Annealing Conditions and Hardness on the Bond Strength of Al/Al Strips Produced by Cold Roll Bonding Process, Mater. Des., 2010, 31(9), p 4508–4513

    Article  CAS  Google Scholar 

  48. N. Bay, Cold Welding. Part I: Characteristics, Bounding Mechanisms, Bond Strength, Metal Constr., 1986, 18, p 369–372

    CAS  Google Scholar 

  49. J.W. Ha Mohamed, Mechanism of Solid State Pressure Welding, Weld. Res. Suppl., 1975, 9, p 302–310

    Google Scholar 

  50. M. Alizadeh and M.H. Paydar, Study on the Effect of Presence of TiH2 Particles on the Roll Bonding Behavior of Aluminum Alloy Strips, Mater. Des., 2009, 30(1), p 82–86

    Article  CAS  Google Scholar 

  51. R. Jamaati and M.R. Toroghinejad, Effect of Al2O3 Nano-Particles on the Bond Strength in CRB Process, Mater. Sci. Eng. A, 2010, 527(18), p 4858–4863

    Article  Google Scholar 

  52. M.A. Soltani, R. Jamaati, and M.R. Toroghinejad, The Influence of TiO2 Nano-Particles on Bond Strength of Cold Roll Bonded Aluminum Strips, Mater. Sci. Eng. A, 2012, 550, p 367–374

    Article  CAS  Google Scholar 

  53. A. Yazdani, E. Salahinejad, J. Moradgholi, and M. Hosseini, A New Consideration on Reinforcement Distribution in the Different Planes of Nanostructured Metal Matrix Composite Sheets Prepared by Accumulative Roll Bonding (ARB), J. Alloy. Compd., 2011, 509(39), p 9562–9564

    Article  CAS  Google Scholar 

  54. M. Rezayat, A. Akbarzadeh, and A. Owhadi, Fabrication of High-Strength Al/SiC p Nanocomposite Sheets by Accumulative Roll Bonding, Metall. Mater. Trans. A, 2012, 43(6), p 2085–2093 (in English)

    Article  CAS  Google Scholar 

  55. M. Alizadeh and M. Talebian, Fabrication of Al/Cup Composite by Accumulative Roll Bonding Process and Investigation of Mechanical Properties, Mater. Sci. Eng. A, 2012, 558, p 331–337

    Article  CAS  Google Scholar 

  56. O. Ghaderi, M.R. Toroghinejad, and A. Najafizadeh, Investigation of Microstructure and Mechanical Properties of Cu-SiCP Composite Produced by Continual Annealing and Roll-Bonding Process, Mater. Sci. Eng. A, 2013, 565, p 243–249

    Article  CAS  Google Scholar 

  57. H. Sekine and R. Chent, A Combined Microstructure Strengthening Analysis of SiCp/Al Metal Matrix Composites, Composites, 1995, 26(3), p 183–188

    Article  CAS  Google Scholar 

  58. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand, Effect of Particle Size on Microstructure and Mechanical Properties of Composites Produced by ARB Process, Mater. Sci. Eng. A, 2011, 528(4-5), p 2143–2148

    Article  Google Scholar 

  59. S. Mahdavi and F. Akhlaghi, Effect of SiC Content on the Processing, Compaction Behavior, and Properties of Al6061/SiC/Gr Hybrid Composites, J. Mater. Sci., 2011, 46(5), p 1502–1511

    Article  CAS  Google Scholar 

  60. S. Mahdavi and F. Akhlaghi, Effect of the Graphite Content on the Tribological Behavior of Al/Gr and Al/30SiC/Gr Composites Processed by In Situ Powder Metallurgy (IPM) Method, Tribol. Lett., 2011, 44(1), p 1–12

    Article  CAS  Google Scholar 

  61. S. Suresha and B.K. Sridhara, Effect of Addition of Graphite Particulates on the Wear Behaviour in Aluminium–Silicon Carbide–Graphite Composites, Mater. Des., 2010, 31(4), p 1804–1812

    Article  CAS  Google Scholar 

  62. S. Suresha and B.K. Sridhara, Wear Characteristics of Hybrid Aluminium Matrix Composites Reinforced with Graphite and Silicon Carbide Particulates, Compos. Sci. Technol., 2010, 70(11), p 1652–1659

    Article  CAS  Google Scholar 

  63. P. Ravindran, K. Manisekar, S. Vinoth Kumar, and P. Rathika, Investigation of Microstructure and Mechanical Properties of Aluminum Hybrid Nano-Composites with the Additions of Solid Lubricant, Mater. Des., 2013, 51, p 448–456

    Article  CAS  Google Scholar 

  64. L. Jinfeng, J. Longtao, W. Gaohui, T. Shoufu, and C. Guoqin, Effect of Graphite Particle Reinforcement on Dry Sliding Wear of SiC/Gr/Al Composites, Rare Metal Mater. Eng., 2009, 38(11), p 1894–1898

    Article  Google Scholar 

  65. P.S. Bains, S.S. Sidhu, and H.S. Payal, Fabrication and Machining of Metal Matrix Composites: a Review, Mater. Manuf. Process., 2016, 31(5), p 553–573

    Article  CAS  Google Scholar 

  66. M.R. Rosenberger, C.E. Schvezov, and E. Forlerer, Wear of Different Aluminum Matrix Composites Under Conditions that Generate a Mechanically Mixed Layer, Wear, 2005, 259(1), p 590–601

    Article  CAS  Google Scholar 

  67. P. Ravindran, K. Manisekar, P. Narayanasamy, N. Selvakumar, and R. Narayanasamy, Application of Factorial Techniques to Study the Wear of Al Hybrid Composites with Graphite Addition, Mater. Des., 2012, 39, p 42–54

    Article  CAS  Google Scholar 

  68. P. Ravindran, K. Manisekar, R. Narayanasamy, and P. Narayanasamy, Tribological Behaviour of Powder Metallurgy-Processed Aluminium Hybrid Composites with the Addition of Graphite Solid Lubricant, Ceram. Int., 2013, 39(2), p 1169–1182

    Article  CAS  Google Scholar 

  69. M. Hosseini, A. Yazdani, and H.D. Manesh, Al 5083/SiCp Composites Produced by Continual Annealing and Roll-Bonding, Mater. Sci. Eng. A, 2013, 585, p 415–421

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support provided by Shahid Chamran University of Ahvaz through the Grant No. 96-3-02-16670 is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reihanian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reihanian, M., Baharloo, A. & Lari Baghal, S.M. Wear-Resistant Al/SiC-Gr Hybrid Metal Matrix Composite Fabricated by Multiple Annealing and Roll Bonding. J. of Materi Eng and Perform 27, 6676–6689 (2018). https://doi.org/10.1007/s11665-018-3740-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3740-9

Keywords

Navigation