Skip to main content
Log in

Fabrication of High-Strength Al/SiC p Nanocomposite Sheets by Accumulative Roll Bonding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Accumulative roll bonding (ARB) was successfully used as a severe plastic deformation method to produce Al-SiC nanocomposite sheets. The effects of process pass and amount of SiC content on microstructure and mechanical properties of the composites are investigated. As expected, production of ultrafine grain structures by the ARB process as well as nanosize particulate reinforcements in the metal matrix composite (MMC) resulted in excellent mechanical properties. According to the results of the tensile tests, it is shown that the yield and tensile strengths of the composite sheet increased with the number of ARB cycles without saturation at the last cycles. Scanning electron microscopy (SEM) revealed that the particles had a random and uniform distribution in the matrix by the last ARB cycles, and strong mechanical bonding takes place at the interface of the particle matrix. Transmission electron microscopy (TEM) and the corresponding selected area diffraction (SAD) demonstrate ultrafine grains with large misorientation in the structure. It is also shown that by increasing the volume fraction of particles up to 3.5 vol pct, the yield and tensile strengths of the composite sheets increased more than 1.3 and 1.4 times the accumulative roll-bonded aluminum sheets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of FEI Company, Hillsboro, OR.

References

  1. I. Ibrahim, F. Mohamed, and E.J. Lavernia: J. Mater. Sci., 1991, vol. 26 (5), pp. 1137–56.

    Article  CAS  Google Scholar 

  2. M. Kok: J. Mater. Process. Technol., 2005, vol. 161, pp. 381–87.

    Article  CAS  Google Scholar 

  3. S. Ozden, R. Ekici, and F. Nair: Compos. Part A, 2007, vol. 38 (2), pp. 484–94.

    Article  Google Scholar 

  4. S.V. Kamat, J.P. Hirth, and R. Mehrabian: Acta Metall., 1989, vol. 37 (9), pp. 2395–2402.

    Article  CAS  Google Scholar 

  5. Y.L. Dong, F.M. Xu, X.L. Shi, C. Zhang, Z.J. Zhang, J.M. Yang, and Y. Tan: Mater. Sci. Eng. A, 2009, vol. 504, pp. 49–54.

    Article  Google Scholar 

  6. Y. Yang, J. Lan, and X. Li: Mater. Sci. Eng. A, 2004, vol. 380, pp. 378–83.

    Article  Google Scholar 

  7. K.D. Woo and D.L. Zhang: Curr. Appl. Phys., 2004, vol. 4, pp. 175–78.

    Article  Google Scholar 

  8. S. Mula, P. Padhi, S.C. Panigrahi, S.K. Pabi, and S. Ghosh: Mater. Res. Bull., 2009, vol. 44, pp. 1154–60.

    Article  CAS  Google Scholar 

  9. J.R. Groza: Int. J. Powder Metall., 1999, vol. 35, pp. 59–66.

    CAS  Google Scholar 

  10. C. Lu, K. Tieu, and D. Wexler: J. Mater. Process. Technol., 2009, vol. 209, pp. 4830–34.

  11. R. Jamaati and M.R. Toroghinejad: Mater. Sci. Eng. A, 2010, vol. 527 (16–17), pp. 4146–51.

    Google Scholar 

  12. K. Kitazono, E. Sato, and K. Kuribayashi: Acta Mater., 2004, vol. 50, pp. 495–98.

    CAS  Google Scholar 

  13. S. Lee, C.H. Lee, and S.Y. Chang: Mater. Sci. Forum., 2004, vol. 452, pp. 613–16.

    Article  Google Scholar 

  14. S. Amirkhanlou, R. Jamaati, B. Niroumand, and M.R. Toroghinejad: Mater. Process. Technol., 2011, vol. 211, pp. 1159–65.

    Article  CAS  Google Scholar 

  15. M. Alizadeh and M.H. Paydar: J. Alloys Compd., 2009, vol. 477 (1–2), pp. 811–16.

    Article  CAS  Google Scholar 

  16. R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, and B. Niroumand: Mater. Sci. Eng. A, 2011, vol. 528 (4–5), pp. 2143–48.

    Google Scholar 

  17. B. Cantor, F. Dunne, and I. Stone: Metal and Ceramic Matrix Composites, Institute of Physics Publishing, Philadelphia, PA, 2004.

    Book  Google Scholar 

  18. M. Eizadjou, H.D. Manesh, and K. Janghorban: J. Alloys Compd., 2009, vol. 474, pp. 406–15.

    Article  CAS  Google Scholar 

  19. R. Jamaati and M.R. Toroghinejad: J. Mater. Des., 2010, vol. 31 (10), pp. 4816–22.

    Article  CAS  Google Scholar 

  20. L. Ceschini, G. Minak, and A. Morri: Compos. Sci. Technol., 2006, vol. 66 (2), pp. 333–42.

    Article  CAS  Google Scholar 

  21. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Acta Metall. 1998, vol. 39 (9), pp. 1221–27.

    CAS  Google Scholar 

  22. H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens: Mater. Sci. Eng. A, 2008, vol. 497 (1–2), pp. 132–38.

    Google Scholar 

  23. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen: Acta Mater., 2009, vol. 57 (14), pp. 4198–4208.

    Article  CAS  Google Scholar 

  24. I. Topic, H.W. Hoken, and M. Goppel: J. Mater. Sci., 2008, vol. 43, pp. 7320–25.

    Article  CAS  Google Scholar 

  25. M. Kouzeli and A. Mortensen: Acta Mater., 2002, vol. 50, pp. 39–51.

    Article  CAS  Google Scholar 

  26. J.C. Shao, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, and K. Yang: Compos. Sci. Technol., 2011, vol. 71 (1), pp. 39–45.

    Article  CAS  Google Scholar 

  27. R.J. Arsenault and N. Shi: Mater. Sci. Eng. A, 1986, vol. 81, pp. 175–87.

    Article  CAS  Google Scholar 

  28. R.M. Aikin and L. Christodoulou: Scripta Metall. Mater., 1991, vol. 25, pp. 9–14.

    Article  CAS  Google Scholar 

  29. M. Rahimian, N. Ehsani, N. Parvin, and H.R. Baharvandi: J. Mater. Des., 2009, vol. 30 (8), pp. 3333–37.

    Article  CAS  Google Scholar 

  30. O. Kazim: Compos. Sci. Technol., 2002, vol. 62, pp. 275–82.

    Article  Google Scholar 

  31. S. Corbin and D. Wilkinson: Acta Metall., 1994, vol. 42, pp. 1311–18.

    Article  CAS  Google Scholar 

  32. L.M. Tham and L. Cheng: Acta Mater., 2001, vol. 49, pp. 3243–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Akbarzadeh Associate Professor.

Additional information

Manuscript submitted August 9, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezayat, M., Akbarzadeh, A. & Owhadi, A. Fabrication of High-Strength Al/SiC p Nanocomposite Sheets by Accumulative Roll Bonding. Metall Mater Trans A 43, 2085–2093 (2012). https://doi.org/10.1007/s11661-011-1039-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1039-7

Keywords

Navigation