Skip to main content

Advertisement

Log in

Effect of Quenching Process on Microstructures and Mechanical Properties of Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

To develop an appropriate quenching process to produce Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C steel, the microstructures and mechanical properties of this steel were investigated under the direct quenching and tempering (DQT) and the direct quenching, reheated quenching and tempering (DQQT) heat treatment processes. The microstructure of the DQQT specimen was basically tempered sorbite with spherical precipitates, while quite a bit of tempered martensite was in the DQT specimen with dispersive nanoscaled precipitates. The yield strengths of the DQT and DQQT specimens were 1154 and 955 MPa, respectively. The yield strength of the DQT specimen was higher than that of the DQQT specimen because of its finer grain size, higher density of dislocations and dispersed precipitates. The DQQT specimen had spherical precipitates, which hindered the propagation of the crack. Moreover, the high-angle grain boundaries in the DQQT specimen took a higher proportion. Therefore, the Charpy impact values of DQT and DQQT specimens at − 60 °C were 38 and 75 J, respectively. Consequently, the mechanical properties of the Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C steel, which met the standard of 1000 MPa grade steel plate for hydropower station, were acquired by the DQQT process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Li and W.L. Jiang, The Application and the Problems of High Strength Steel on Penstock in Chinese Hydroelectric Station, ISIJ Int., 2012, 42(12), p 1419–1422

    Article  Google Scholar 

  2. G.Z. Xiao, H.S. Di, F.X. Zhu, B.Z. Chen, and B. Qiu, Influence of Direct Quenching on Microstructure and Mechanical Properties of Steel Plate for Large Oil Storage Tanks, J. Mater. Eng. Perform., 2010, 19(6), p 868–872

    Article  Google Scholar 

  3. C. Ouchi, Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes, ISIJ Int., 2001, 41(6), p 542–553

    Article  Google Scholar 

  4. S.K. Ghosh, A. Haldar, and P.P. Chattopadhyay, Effect of Pre-strain on the Ageing Behavior of Directly Quenched Copper Containing Micro-alloy Steel, Mater. Charact., 2008, 59(9), p 1227–1233

    Article  Google Scholar 

  5. W.S. Chang, Microstructure and Mechanical Properties of 780 MPa High Strength Steels Produced by Direct-Quenching and Tempering Process, J. Mater. Sci., 2002, 37(10), p 1973–1979

    Article  Google Scholar 

  6. J. Qiu, X. Ju, Y. Xin, S. Liu, Y.L. Wang, H.B. Wu, and D. Tang, Effect of Direct and Reheated Quenching on Microstructure and Mechanical Properties of CLAM Steel, J. Nucl. Mater., 2010, 407(3), p 189–194

    Article  Google Scholar 

  7. A.H. Meysami, R. Ghasemzadeh, S.H. Seyedein, and M.R. Aboutalebi, An Investigation on the Microstructure and Mechanical Properties of Direct-Quenched and Tempered AISI, 4140 Steel, Mater. Des., 2010, 31(3), p 1570–1575

    Article  Google Scholar 

  8. A.E. Amer, M.Y. Koo, K.H. Lee, S.H. Kim, and S.H. Hong, Effect of Welding Heat Input on Microstructure and Mechanical Properties of Simulated HAZ in Cu Containing Microalloyed Steel, J. Mater. Sci., 2010, 45(5), p 1248–1254

    Article  Google Scholar 

  9. L. Lan, C. Qiu, D. Zhao, X. Gao, and L. Du, Analysis of Martensite-austenite Constituent and Its Effect on Toughness in Submerged Arc Welded Joint of Low Carbon Bainitic Steel, J. Mater. Sci., 2012, 47(11), p 4732–4742

    Article  Google Scholar 

  10. A.F. Gourgues, H.M. Flower, and T.C. Lindley, Electron Backscattering Diffraction Study of Acicular Ferrite, Bainite, and Martensite Steel Microstructures, Mater. Sci. Tech., 2000, 16(1), p 26–40

    Article  Google Scholar 

  11. L. Feng, C. Wang, L. Lu, Z.D. Wang, G.D. Wang, and R.D.K. Misra, Microstructural Evolution and Properties of a High Strength Steel with Different Direct Quenching Processes, J. Iron. Steel Res. Int., 2015, 22(4), p 344–351

    Article  Google Scholar 

  12. J.W. Morris, Jr., On the Ductile-Brittle Transition in Lath Martensitic Steel, ISIJ Int., 2011, 51(10), p 1569–1575

    Article  Google Scholar 

  13. A. Ghosh, A. Ray, D. Chakrabarti, and C.L. Davis, Cleavage Initiation in Steel: Competition Between Large Grains and Large Particles, Mater. Sci. Eng. A, 2013, 561, p 126–135

    Article  Google Scholar 

  14. T. Karthikeyan, V. Thomas Paul, S. Saroja, A. Moitra, G. Sasikala, and M. Vijayalakshmi, Grain Refinement to Improve Toughness in 9Cr-1Mo Steel Through a Double Austenitization Treatment, J. Nucl. Mater., 2011, 419, p 256–262

    Article  Google Scholar 

  15. S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki, Effect of Austenite Grain Size on the Morphology and Crystallography of Lath Martensite in Low Carbon Steels, ISIJ Int., 2005, 45(1), p 91–94

    Article  Google Scholar 

  16. A. Chatterjee, D. Chakrabarti, A. Moitra, R. Mitra, and A.K. Bhaduri, Effect of Normalization Temperatures on Ductile-Brittle Transition Temperature of a Modified 9Cr-1Mo Steel, Mater. Sci. Eng. A, 2014, 618, p 219–231

    Article  Google Scholar 

  17. J. Hu, L.X. Du, J.J. Wang, and Q.Y. Sun, Cooling Process and Mechanical Properties Design of Hot-Rolled Low Carbon High Strength Microalloyed Steel for Automotive Wheel Usage, Mater. Des., 2014, 53, p 332–337

    Article  Google Scholar 

  18. I.A. Yakubtsov and J.D. Boyd, Effect of Alloying on Microstructure and Mechanical Properties of Bainitic High Strength Plate Steels, Mater. Sci. Tech., 2008, 24(2), p 221–227

    Article  Google Scholar 

  19. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54(5), p 1279–1288

    Article  Google Scholar 

  20. R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano, Microstructural Evolution in a New 770 Mpa Hot Rolled Nb-Ti Microalloyed Steel, Mater. Sci. Eng. A, 2005, 394, p 339–352

    Article  Google Scholar 

  21. I.A. Yakubtsov, P. Poruks, and J.D. Boyd, Microstructure and Mechanical Properties of Bainitic Low Carbon High Strength Plate Steels, Mater. Sci. Eng. A, 2008, 480, p 109–116

    Article  Google Scholar 

  22. H.J. Kestenbach, S.S. Campos, and E.V. Morales, Role of Interphase Precipitation in Microalloyed Hot Strip Steels, Mater. Sci. Tech., 2006, 22(6), p 615–626

    Article  Google Scholar 

  23. J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, and R.D.K. Misra, Structure-mechanical Property Relationship in Low Carbon Microalloyed Steel Plate Processed Using Controlled Rolling and Two-Stage Continuous Cooling, Mater. Sci. Eng. A, 2013, 585, p 197–204

    Article  Google Scholar 

  24. H. Xie, L.X. Du, J. Hu, and R.D.K. Misra, Microstructure and Mechanical Properties of a Novel 1000 MPa Grade TMCP Low Carbon Microalloyed Steel with Combination of High Strength and Excellent Toughness, Mater. Sci. Eng. A, 2014, 612, p 123–130

    Article  Google Scholar 

  25. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon Partitioning into Austenite after Martensite Transformation, Acta Mater., 2003, 51(9), p 2611–2622

    Article  Google Scholar 

  26. A. Lambert-Perlade, A.F. Gourgues, and A. Pineau, Austenite to Bainite Phase Transformation in the Heat-Affect Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, 52(8), p 2337–2348

    Article  Google Scholar 

  27. A.F. Gourgues, Electron Backscatter Diffraction and Cracking, Mater. Sci. Tech., 2002, 18(2), p 119–133

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the financial support of the National Natural Science Foundation of China (51274062) and Research Fund for the Doctoral Program of Higher Education of China (20130042110040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, C., Jin, X. et al. Effect of Quenching Process on Microstructures and Mechanical Properties of Fe-0.9Mn-0.5Cr-2.4Ni-0.5Mo-C Steel. J. of Materi Eng and Perform 27, 1505–1513 (2018). https://doi.org/10.1007/s11665-018-3163-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3163-7

Keywords

Navigation