Skip to main content
Log in

Effect of Heat-Treatment Schedule on the Microstructure and Mechanical Properties of Cold-Rolled Dual-Phase Steels

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Low-carbon (0.08 wt% C) steel has been subjected to three different heat treatments to obtain dual-phase steels with different microstructures. An understanding of structure–property was established through tensile tests, in conjunction with scanning electron microscope and transmission electron microscope. The results show that the steel after intermediate quenching (IQ) consisting of fine and fibrous martensite exhibited the intermediate strength, highest elongation and the best comprehensive performance of mechanical properties, whereas the steel subjected to intercritical annealing (IA) produced a network martensite along ferrite grain boundaries, having the lowest strength and intermediate elongation. Besides, step quenching (SQ) resulted in a coarse and blocky ferrite–martensite microstructure showing the worst mechanical properties of the three different heat-treatment conditions. The strain-hardening behavior was studied through the modified Crussard–Jaoul model, indicating two stages of strain-hardening behavior for all three samples. The highest magnitude of strain-hardening ability was obtained by IQ annealing routes. The analysis of the fractured surface revealed that ferrite/martensite interfaces are the most susceptible for microvoid nucleation. However, martensite microcracks were also observed in SQ sample, and the microvoids are nucleated within the ferrite grain in IA sample as well. The variations in strength, elongation, strain-hardening behavior and fracture mechanism of the steel with different heat-treatment schedules were further discussed in relation to the microstructural features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Kadkhodapour, A. Butz, S. Ziaei-Rad, Acta Mater. 59, 2575 (2011)

    Article  Google Scholar 

  2. A. Huseyin, K.Z. Havva, K. Ceylan, J. Iron. Steel Res. Int. 17, 73 (2010)

    Article  Google Scholar 

  3. J.J. Luo, W. Shi, Q.L. Huang, L. Li, J. Iron. Steel Res. Int. 17, 54 (2010)

    Article  Google Scholar 

  4. R.O. Rocha, T.M.F. Melo, E.V. Pereloma, D.B. Santos, Mater. Sci. Eng., A 391, 296 (2005)

    Article  Google Scholar 

  5. G.A. Cingara, Y. Ososkov, M.K. Jain, D.S. Wilkinson, Mater. Sci. Eng., A 516, 7 (2009)

    Article  Google Scholar 

  6. M. Asadi, B.C.D. Cooman, H. Palkowski, Mater. Sci. Eng., A 538, 42 (2012)

    Article  Google Scholar 

  7. H. Ghassemi-Armaki, R. Maab, S.P. Bhat, Acta Mater. 62, 197 (2014)

    Article  Google Scholar 

  8. Y. Sun, X.F. Li, X.Y. Yu, Acta Metall. Sin. (Engl. Lett.) 27, 101 (2014)

    Article  Google Scholar 

  9. M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, D. Raabe, Acta Mater. 70, 174 (2014)

    Article  Google Scholar 

  10. X. Sun, K.S. Choi, W.N. Liu, M.A. Khaleel, Int. J. Plast 25, 1888 (2009)

    Article  Google Scholar 

  11. J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcagnotto, Acta Mater. 59, 4387 (2011)

    Article  Google Scholar 

  12. C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers, Scr. Mater. 63, 316 (2010)

    Article  Google Scholar 

  13. H. Ghadbeigi, C. Pinna, S. Celotto, J.R. Yates, Mater. Sci. Eng., A 527, 5026 (2010)

    Article  Google Scholar 

  14. N. Peranio, Y.J. Li, F. Roters, D. Raabe, Mater. Sci. Eng., A 527, 4161 (2010)

    Article  Google Scholar 

  15. A. Bag, K.K. Ray, E.S. Dwarakadasa, Metall. Mater. Trans. A 30, 1193 (1999)

    Article  Google Scholar 

  16. M.A. Maleque, Y.M. Poon, H.H. Masjuki, J. Mater. Process. Technol. 153–154, 482 (2004)

    Article  Google Scholar 

  17. D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44, 2957 (2009)

    Article  Google Scholar 

  18. N.J. Kim, G. Thomas, Metall. Trans. A 12, 483 (1981)

    Article  Google Scholar 

  19. G. Speich, V. Demarest, R. Miller, Metall. Mater. Trans. A 12, 1419 (1981)

    Article  Google Scholar 

  20. M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Acta Mater. 59, 658 (2011)

    Article  Google Scholar 

  21. M. Calcagnotto, D. Ponge, D. Raabe, Mater. Sci. Eng., A 527, 7832 (2010)

    Article  Google Scholar 

  22. N. Saeidi, F. Ashrafizadeh, B. Niroumand, Mater. Sci. Eng., A 599, 145 (2014)

    Article  Google Scholar 

  23. Y. Mazaheri, A. Kermanpur, A. Najamizadeh, ISIJ Int. 55, 218 (2015)

    Article  Google Scholar 

  24. Y. Mazaheri, A. Kermanpur, A. Najafizadeh, Mater. Sci. Eng., A 619, 1 (2014)

    Article  Google Scholar 

  25. A.R. Marder, Metall. Trans. A 13, 85 (1982)

    Article  Google Scholar 

  26. K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, Mater. Sci. Eng., A 604, 135 (2014)

    Article  Google Scholar 

  27. A. Karmakar, M. Ghosh, D. Chakrabarti, Mater. Sci. Eng., A 564, 389 (2013)

    Article  Google Scholar 

  28. T. Bhattacharyya, T. Sakaki, G.J. Weng, Metall. Trans. A 24, 301 (1993)

    Article  Google Scholar 

  29. A. Hüseyin, K.Z. Havva, K. Ceylan, J. Iron. Steel Res. Int. 17, 73 (2010)

    Article  Google Scholar 

  30. A. Bayram, A. Uguz, M. Ula, Mater. Charact. 43, 259 (1999)

    Article  Google Scholar 

  31. P. Li, J. Li, W.B. Hua, D.H. Xu, J. Alloys Compd. 578, 320 (2013)

    Article  Google Scholar 

  32. R.R. Mohanty, O.A. Girina, N.M. Fonstein, Metall. Mater. Trans. A 42, 3680 (2011)

    Article  Google Scholar 

  33. M. Türkmen, S. Gündüz, Acta Metall. Sin. (Engl. Lett.) 27, 279 (2014)

    Article  Google Scholar 

  34. H.F. Lan, X.H. Liu, L.X. Du, Acta Metall. Sin. (Engl. Lett.) 25, 443 (2012)

    Google Scholar 

  35. K.T. Park, S.Y. Han, B.D. Ahn, D.H. Shin, Y.K. Lee, K.K. Um, Scr. Mater. 51, 909 (2004)

    Article  Google Scholar 

  36. M. Calcagnotto, D. Ponge, D. Raabe, ISIJ Int. 48, 1096 (2008)

    Article  Google Scholar 

  37. V. Colla, M. De Sanctis, A. Dimatteo, Metall. Mater. Trans. 40, 2557 (2009)

    Article  Google Scholar 

  38. W.J. Nie, C.J. Shang, H.L. Guan, X.B. Zhang, S.H. Chen, Acta Metall. Sin. 48, 298 (2012). (in Chinese)

    Article  Google Scholar 

  39. Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, D.H. Shin, Acta Mater. 53, 3125 (2005)

    Article  Google Scholar 

  40. Y. Mazaheri, A. Kermanpur, A. Najafizadeh, N. Saeidi, Mater. Sci. Eng., A 612, 54 (2014)

    Article  Google Scholar 

  41. N.K. Balliger, T. Gladman, Met. Sci. 15, 95 (1981)

    Article  Google Scholar 

  42. M. Mazinani, W.J. Poole, Metall. Mater. Trans. A 38, 328 (2007)

    Article  Google Scholar 

  43. M. Sarwar, J. Mater. Sci. 31, 2091 (1996)

    Article  Google Scholar 

  44. P. Uggowitzer, H.P. Stüwe, Mater. Sci. Eng. 55, 181 (1982)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key Project of Scientific and Technical Supporting Programs of China (No. 2011CB606306-2) and the National Natural Science Foundation of China (Grant No. 51204048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Shuang Di.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, YG., Di, HS. & Zhang, JC. Effect of Heat-Treatment Schedule on the Microstructure and Mechanical Properties of Cold-Rolled Dual-Phase Steels. Acta Metall. Sin. (Engl. Lett.) 28, 1141–1148 (2015). https://doi.org/10.1007/s40195-015-0305-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0305-x

Keywords

Navigation