Skip to main content

Advertisement

Log in

Effect of modifying matrix microstructures and nanosized precipitates on strengthening mechanisms and ductile-to-brittle-transition-temperature in a 1000 MPa Ni–Cr–Mo–Cu steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A superior combination of yield strength (1001 MPa) and − 20 °C impact toughness (166 J) was obtained in Nb–V–Ti-microalloyed Ni–Cr–Mo–Cu steel treated by direct quenching and tempering route (DQT). The tested steels treated by DQT route and re-austenitization and tempering route (QT) were compared with each other in terms of mechanical properties and microstructures characterized by optical microscopy, transmission electron microscopy, X-ray diffraction, electron back-scattered diffraction method and so on. Strength and Vickers hardness of the tested steel treated by the above two routes vary with isothermal aging temperature (400–600 °C), shown as under-aged state, peak-aged state and over-aged state. All DQT specimens show higher strength and Vickers hardness than QT specimens with the same aging condition. Furthermore, the largest difference of yield strength between DQT and QT specimens was shown in DQT600 and QT600 specimens. DQT600 or QT600 specimens refers to direct quenched (DQ) or quenched (Q) specimens isothermally aged at 600 °C. The main disparities in quenched microstructure between DQ and Q specimens are mainly in morphology of prior austenite grains, dislocation density of martensite matrix and solution amount of Nb and Mo elements dissolving in martensite matrix, which play key roles in affecting microstructure and mechanical properties of DQT and QT specimens. Higher dislocation density of matrix and finer average diameter of both MC (M is any combination of Nb, Mo and V) and Cu-rich particles were shown in DQT600 specimens than in QT600 specimens. Strengthening from dislocations and nanosized MC and Cu-rich particles mainly leads to the largest difference of yield strength between DQT600 and QT600 specimens. In addition, strong dislocation strengthening and precipitation strengthening in DQT600 specimen also elevated its ductile-to-brittle-transition-temperature, compared with QT600 specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. D. Jain, D. Isheim, D.N. Seidman, Metall. Mater. Trans. A 48 (2017) 3205–3219.

    Article  Google Scholar 

  2. Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Acta Mater. 97 (2015) 58–67.

    Article  Google Scholar 

  3. R.P. Kolli, D.N. Seidman, Acta Mater. 56 (2008) 2073–2088.

    Article  Google Scholar 

  4. S. Vaynman, D. Isheim, R.P. Kolli, S.P. Bhat, D.N. Seidman, M.E. Fine, Metall. Mater. Trans. A 39 (2008) 363–373.

    Article  Google Scholar 

  5. S.K. Dhua, D. Mukerjee, D.S. Sarma, Metall. Mater. Trans. A 32 (2001) 2259–2270.

    Article  Google Scholar 

  6. H. Su, X.B. Luo, C.F. Yang, F. Chai, H. Li, J. Iron Steel Res. Int. 21 (2014) 619–624.

    Article  Google Scholar 

  7. M.K. Miller, K.F. Russell, P. Pareige, M.J. Starink, R.C. Thomson, Mater. Sci. Eng. A 250 (1998) 49–54.

    Article  Google Scholar 

  8. W. Wang, B. Zhou, G. Xu, D.F. Chu, J.C. Peng, Mater. Charact. 62 (2011) 438–441.

    Article  Google Scholar 

  9. K. Osamura, H. Okuda, S. Ochiai, M. Takashima, K. Asano, M. Furusaka, K. Kishida, F. Kurosawa, ISIJ Int. 34 (1994) 359–365.

    Article  Google Scholar 

  10. C. Zhang, M. Enomoto, Acta Mater. 54 (2006) 4183–4191.

    Article  Google Scholar 

  11. G.C. Hwang, S. Lee, J.Y. Yoo, W.Y. Choo, Mater. Sci. Eng. A 252 (1998) 256–268.

    Article  Google Scholar 

  12. J.Y. Yoo, W.Y. Choo, T.W. Park, Y.W. Kim, ISIJ Int. 35 (1995) 1034–1040.

    Article  Google Scholar 

  13. S.K. Dhua, S.K. Sen, Mater. Sci. Eng. A 528 (2011) 6356–6365.

    Article  Google Scholar 

  14. Q.D. Liu, H.M. Wen, H. Zhang, J.F. Gu, C.W. Li, E.J. Lavernia, Metall. Mater. Trans. A 47 (2016) 1960–1974.

    Article  Google Scholar 

  15. X.H. Xi, J.L. Wang, X. Li, L.Q. Chen, Z.D. Wang, Metall. Mater. Trans. A 50 (2019) 2912–2921.

    Article  Google Scholar 

  16. D. Jain, D. Isheim, A.H. Hunter, D.N. Seidman, Metall. Mater. Trans. A 47 (2016) 3860–3872.

    Article  Google Scholar 

  17. Y. Zhao, S.S. Xu, J.P. Li, J. Zhang, L.W. Sun, L. Chen, G.G. Sun, S.M. Peng, Z.W. Zhang, Mater. Sci. Eng. A 691 (2017) 162–167.

    Article  Google Scholar 

  18. Z.J. Xie, C.J. Shang, X.L. Wang, X.P. Ma, S.V. Subramanian, R.D.K. Misra, Mater. Sci. Eng. A 727 (2018) 200–207.

    Article  Google Scholar 

  19. C. Ouchi, ISIJ Int. 41 (2001) 542–553.

    Article  Google Scholar 

  20. P. Gong, E.J. Palmiere, W.M. Rainforth, Acta Mater. 119 (2016) 43–54.

    Article  Google Scholar 

  21. R.O. Ritchie, Nat. Mater. 10 (2011) 817–822.

    Article  Google Scholar 

  22. S.C. Chen, C.Y. Huang, Y.T. Wang, H.W. Yen, Mater. Des. 134 (2017) 434–445.

    Article  Google Scholar 

  23. R.L. Higginson, C.M. Sellars, Worked Examples in Quantitative Metallography, Maney, London, UK, 2003.

  24. E.G. Dere, H. Sharma, R.H. Petrov, J. Sietsma, S.E. Offerman, Scripta Mater. 68 (2013) 651–654.

    Article  Google Scholar 

  25. J.S. Wang, M.D. Mulholland, G.B. Olson, D.N. Seidman, Acta Mater. 61 (2013) 4939–4952.

    Article  Google Scholar 

  26. G.K. Williamson, W.H. Hall, Acta Metall. 1 (1953) 22–31.

    Article  Google Scholar 

  27. G.K. Williamson, R.E. Smallman, Philos. Mag. 1 (1956) 34–46.

    Article  Google Scholar 

  28. X.B. Luo, C.F. Yang, H. Su, F. Chai, Trans. Mater. Heat Treat. 32 (2011) No. 6, 73–77.

    Google Scholar 

  29. B. Hutchinson, J. Hagström, O. Karlsson, D. Lindell, M. Tornberg, F. Lindberg, M. Thuvander, Acta Mater. 59 (2011) 5845–5858.

    Article  Google Scholar 

  30. J. Liu, H. Yu, T. Zhou, C.H. Song, K. Zhang, Mater. Sci. Eng. A 619 (2014) 212–220.

    Article  Google Scholar 

  31. R.H. Willens, E. Buehler, B.T. Matthias, Phys. Rev. 159 (1967) 327–330.

    Article  Google Scholar 

  32. J.H. Jang, C.H. Lee, Y.U. Heo, D.W. Suh, Acta Mater. 60 (2012) 208–217.

    Article  Google Scholar 

  33. Z.Y. Zhang, Z.D. Li, Q.L. Yong, X.J. Sun, Z.Q. Wang, G.D. Wang, Acta Metall. Sin. 51 (2015) 315–324.

    Google Scholar 

  34. J.Z. Zhao, Q.L. Wang, H.L. Li, J. He, Metall. Mater. Trans. A 42 (2011) 3200–3207.

    Article  Google Scholar 

  35. D. Isheim, M.S. Gagliano, M.E. Fine, D.N. Seidman, Acta Mater. 54 (2006) 841–849.

    Article  Google Scholar 

  36. L.Z. Han, Q.D. Liu, J.F. Gu, Chin. J. Mech. Eng. (Engl. Ed.) 32 (2019) 818.

  37. R. Monzen, M.L. Jenkins, A.P. Sutton, Philos. Mag. A 80 (2000) 711–723.

    Article  Google Scholar 

  38. X.L. Li, P. Wu, R.J. Yang, S.T. Zhao, S.P. Zhang, S. Chen, X.Z. Cao, X.M. Wang, Mater. Des. 115 (2017) 165–169.

    Article  Google Scholar 

  39. D.S. Liu, M. Luo, B.B. Cheng, R. Cao, J.H. Chen, Metall. Mater. Trans. A 49 (2018) 4918–4936.

    Article  Google Scholar 

  40. Q.L. Yong, Second phases in structural steels, Metallurgical industry press, Beijing, China, 2006.

    Google Scholar 

  41. Q.B. Yu, Z.D. Wang, X.H. Liu, G.D. Wang, Mater. Sci. Eng. A 379 (2004) 384–390.

    Article  Google Scholar 

  42. S. Kang, J.G. Jung, Y.K. Lee, Mater. Trans. 53 (2012) 2187–2190.

    Article  Google Scholar 

  43. Y.L. Zhao, Microstructure Control and Strengthening Mechanism of 1500MPa Grade Direct Quenched Martensitic Steel, Kunming University of Science and Technology, Kuming, China, 2010.

    Google Scholar 

  44. Z.T. Li, F. Chai, L. Yang, X.B. Luo, C.F. Yang, Mater. Des. 191 (2020) 108637.

  45. A. Saastamoinen, A. Kaijalainen, D. Porter, P. Suikkanen, J.R. Yang, Y.T. Tsai, Mater. Charact. 139 (2018) 1–10.

    Article  Google Scholar 

  46. Z.Y. Zhang, X.J. Sun, Q.L. Yong, Z.D. Li, Z.Q. Wang, G.D. Wang, Acta Metall. Sin. 52 (2016) 410–418.

    Google Scholar 

  47. K. Nakashima, Y. Futamura, T. Tsuchiyama, S. Takaki, ISIJ Int. 42 (2002) 1541–1545.

    Article  Google Scholar 

  48. G. Han, Z.J. Xie, L. Xiong, C.J. Shang, R.D.K. Misra, Mater. Sci. Eng. A 705 (2017) 89–97.

    Article  Google Scholar 

  49. Z.Y. Zhang, F. Chai, X.B. Luo, G. Chen, C.F. Chai, Acta Metall. Sin. 55 (2019) 783–791.

    Google Scholar 

  50. J.H. Chen, R. Cao, Chapter 2 – Methodology, in: J.H. Chen, R. Cao (Eds.), Micromechanism of Cleavage Fracture of Metals, Butterworth–Heinemann, Boston, USA, 2015, pp. 55–80.

    Chapter  Google Scholar 

  51. J.W. Morris, ISIJ Int. 51 (2011) 1569–1575.

    Article  Google Scholar 

  52. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, Scripta Mater. 58 (2008) 492–495.

    Article  Google Scholar 

  53. T. Hanamura, F. Yin, K. Nagai, ISIJ Int. 44 (2004) 610–617.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFB0701802, 2017YFB0703002 and 2017YFB0304501) and the National Natural Science Foundation of China (No. 51701044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Yang, L., Chai, F. et al. Effect of modifying matrix microstructures and nanosized precipitates on strengthening mechanisms and ductile-to-brittle-transition-temperature in a 1000 MPa Ni–Cr–Mo–Cu steel. J. Iron Steel Res. Int. 29, 1257–1276 (2022). https://doi.org/10.1007/s42243-021-00658-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00658-3

Keywords

Navigation