Skip to main content
Log in

Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Stainless steel is one of the most popular materials used for selective laser melting (SLM) processing to produce nearly fully dense components from 3D CAD models. The tribological and corrosion properties of stainless steel components are important in many engineering applications. In this work, the wear behaviour of SLM 316L stainless steel was investigated under dry sliding conditions, and the corrosion properties were measured electrochemically in a chloride containing solution. The results show that as compared to the standard bulk 316L steel, the SLM 316L steel exhibits deteriorated dry sliding wear resistance. The wear rate of SLM steel is dependent on the vol.% porosity in the steel and by obtaining full density it is possible achieve wear resistance similar to that of the standard bulk 316L steel. In the tested chloride containing solution, the general corrosion behaviour of the SLM steel is similar to that of the standard bulk 316L steel, but the SLM steel suffers from a reduced breakdown potential and is more susceptible to pitting corrosion. Efforts have been made to correlate the obtained results with porosity in the SLM steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G.N. Levy, The Role and Future of the Laser Technology in Additive Manufacturing Environment, Phys. Proced., 2010, 5, p 65–80

    Article  Google Scholar 

  2. F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, The Manufacture of Hard Tools from Metallic Powders by Selective Laser Melting, J. Mater. Process. Technol., 2001, 111, p 210–213

    Article  Google Scholar 

  3. D. Zhang, Q. Cai, J. Liu, and R. Li, Research on Process and Microstructure Formation of W-Ni-Fe Alloy Fabricated by Selective Laser Melting, J. Mater. Eng. Perform., 2011, 20(6), p 1049–1054

    Article  Google Scholar 

  4. J.P. Kruth, P. Mercelis, and J.V. Vaernbergh, Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting, Rapid Prototyp. J., 2005, 11, p 26–36

    Article  Google Scholar 

  5. K. Osakada and M. Shiomi, Flexible Manufacturing of Metallic Products by Selective Laser Melting of Powder, Int. J. Mach. Tool. Manuf., 2006, 46, p 1188–1193

    Article  Google Scholar 

  6. I. Yadroitsev, L. Thivillon, P. Bertrand, and I. Smurov, Strategy of Manufacturing Components with Designed Internal Structure by Selective Laser Melting of Metallic Powder, Appl. Surf. Sci., 2007, 254, p 980–983

    Article  Google Scholar 

  7. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, and W. Jiang, Densification Behaviour of Gas and Water Atomized 316L Stainless Steel Powder During Selective Laser Melting, Appl. Surf. Sci., 2010, 256, p 4350–4356

    Article  Google Scholar 

  8. L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, and T.B. Sercombe, Manufacture by Selective Laser Melting and Mechanical Behaviour of a Biomedical Ti-24Nb-4Zr-8Sn Alloy, Scripta Mater., 2011, 65, p 21–24

    Article  Google Scholar 

  9. T. Vilaro, C. Colin, J.D. Bartout, L. Naze, and M. Sennour, Microstructure and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickel-Base Superalloy, Mater. Sci. Eng. A, 2012, 534, p 446–451

    Article  Google Scholar 

  10. T. Bormann, R. Schumacher, B. Muller, M. Mertmann, and M. de Wild, Tailoring Selective Laser Melting Process Parameters for NiTi Implants, J. Mater. Eng. Perform., 2012, 21(12), p 2519–2524

    Article  Google Scholar 

  11. K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson, High Density Selective Laser Melting of Waspaloy, J. Mater. Process. Technol., 2008, 195, p 77–87

    Article  Google Scholar 

  12. S. Xubin and Y. Yang, Research on Track Overlapping During Selective Laser Melting of Powders, J. Mater. Process. Technol., 2012, 212, p 2074–2079

    Article  Google Scholar 

  13. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Selective Laser Melting of Iron-Based Powder, J. Mater. Process. Technol., 2004, 149, p 616–622

    Article  Google Scholar 

  14. E. Brinksmeier, G. Levy, D. Meyer, and A.B. Spierings, Surface Integrity of Selective Laser Melted Components, CIRP Ann. Manuf. Technol., 2010, 59, p 601–606

    Article  Google Scholar 

  15. R. Li, J. Liu, Y. Shi, and Z. Xie, 316L Stainless Steel with Gradient Porosity Fabricated by Selective Laser Melting, J. Mater. Eng. Perform., 2010, 19(5), p 666–671

    Article  Google Scholar 

  16. Y. Zhang, M. Xi, S. Gao, and L. Shi, Characterization of Laser Direct Deposited Metallic Parts, J. Mater. Process. Technol., 2003, 142, p 582–585

    Article  Google Scholar 

  17. I. Yadroitsev and I. Smurov, Surface Morphology in Selective Laser Melting of Metal Powders, Phys. Proced., 2011, 12, p 264–270

    Article  Google Scholar 

  18. I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric Analysis of the Selective Laser Melting Process, Appl. Surf. Sci., 2007, 253, p 8064–8069

    Article  Google Scholar 

  19. B. Song, S. Dong, B. Zhang, H. Liao, and C. Coddet, Effects of Processing Parameters on Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4 V, Mater. Des., 2012, 35, p 120–125

    Article  Google Scholar 

  20. E. Yasa and J.P. Kruth, Microstructure Investigation of Selective Laser Melting 316L Stainless Steel Parts Exposed to Laser Re-melting, Proced. Eng., 2011, 19, p 389–395

    Article  Google Scholar 

  21. A. Lamikiz, J.A. Sánchez, L.N. López de Lacalle, and J.L. Arana, Laser Polishing of Parts Built by Selective Laser Sintering, Int. J. Mach. Tool. Manuf., 2007, 47, p 2040–2050

    Article  Google Scholar 

  22. T. Vilaro, C. Colin, and J.D. Bartout, As-Fabricated and Heat-Treated Microstructures of Ti-6Al-4 V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A, 2011, 42(10), p 3190–3199

    Article  Google Scholar 

  23. K. Zhang, W. Liu, and X. Shang, Research on the Processing Experiments of Laser Metal Deposition Shaping, Opt. Laser Technol., 2007, 39, p 549–557

    Article  Google Scholar 

  24. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bultmann, High Power Selective Laser Melting (HP SLM) of Aluminium Parts, Phys. Proced., 2011, 12, p 271–278

    Article  Google Scholar 

  25. D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, and R. Poprawe, Densification Behaviour, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium, Acta Mater., 2012, 60, p 3849–3860

    Article  Google Scholar 

  26. S. Kumar and J.P. Kruth, Wear Performance of SLS/SLM Materials, Adv. Eng. Mater., 2008, 10, p 750–753

    Article  Google Scholar 

  27. R. Li, J. Liu, Y. Shi, L. Wang, and W. Jiang, Balling Behavior of Stainless Steel and Nickel Powder During Selective Laser Melting Process, Int. J. Adv. Manuf. Technol., 2012, 59, p 1025–1035

    Article  Google Scholar 

  28. T.F.J. Quinn, Oxidational Wear, Wear, 1971, 18, p 413–419

    Article  Google Scholar 

  29. N. Tenwick and S.W.E. Earles, A Simplified Theory for the Oxidative Wear of Steels, Wear, 1971, 18, p 381–391

    Article  Google Scholar 

  30. T.F.J. Quinn, Oxidational Wear Modelling: Part II. The General Theory of Oxidational Wear, Wear, 1994, 175, p 199–208

    Article  Google Scholar 

  31. Z. Szklarska-Smialowska, Pitting Corrosion of Metals, National Association of Corrosion Engineers, Houston, 1986

    Google Scholar 

  32. P.C. Pistorius and G.T. Burstein, Metastable Pitting Corrosion of Stainless Steel and the Transition to Stability, Philos. Trans. R. Soc. Lond., 1992, A341, p 531–559

    Article  Google Scholar 

  33. B. Shahabi Kargar, M.H. Moayed, A. Babakhani, and A. Davoodi, Improving the Corrosion Behaviour of Powder Metallurgical 316L Alloy by Prepassivation in 20% Nitric Acid, Corros. Sci., 2011, 53, p 135–146

    Article  Google Scholar 

  34. K. Sasaki and G.T. Burstein, The Generation of Surface Roughness During Slurry Erosion-Corrosion and Its Effect on the Pitting Potential, Corros. Sci., 1996, 38, p 2111–3120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Moroz, A. & Alrbaey, K. Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel. J. of Materi Eng and Perform 23, 518–526 (2014). https://doi.org/10.1007/s11665-013-0784-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0784-8

Keywords

Navigation