Skip to main content

Advertisement

Log in

Research on Process and Microstructure Formation of W-Ni-Fe Alloy Fabricated by Selective Laser Melting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

W-Ni-Fe alloys are important materials for many practical applications; however, at present, they are usually fabricated by conventional powder metallurgy techniques, which is difficult in fabrication with complex shapes. In this work, a selective laser melting (SLM) processing method was developed for fabricating W-Ni-Fe alloys parts. A process map was obtained for selection of proper laser parameters by optimizing processing conditions. Microstructures of laser fabricated samples in different laser energy inputs were investigated. There are two coexisting forming mechanisms in the SLM process: (i) liquid phase sintering (LPS) with full melting of Ni and Fe powders but non-melting of W powders and (ii) melting/solidification with full melting of W powders. Moreover, with increasing laser energy, a transition trend of forming mechanism from LPS to full melting/solidification can be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, The Manufacturing of Hard Tools from Metallic Powders by Selective Laser Melting, J. Mater. Process. Technol., 2001, 111(1–3), p 210–213

    Article  CAS  Google Scholar 

  2. E.C. Santos, M. Shiomi, K. Osakada, and T. Laoui, Rapid Manufacturing of Metal Components by Laser Forming, Int. J. Mach. Tools Manuf., 2006, 46(12–13), p 1459–1468

    Article  Google Scholar 

  3. A. Simchi, F. Petzoldt, and H. Pohl, On the Development of Direct Metal Laser Sintering for Rapid Tooling, J. Mater. Process. Technol., 2003, 141(3), p 319–328

    Article  CAS  Google Scholar 

  4. X. Wu and J. Mei, Near Net Shape Manufacturing of Components Using Direct Laser Fabrication Technology, J. Mater. Process. Technol., 2003, 135(2–3), p 266–270

    Article  CAS  Google Scholar 

  5. P. Fischer, V. Romano, H.P. Weber, N.P. Karapatis, E. Boillat, and R. Glardon, Sintering of Commercially Pure Titanium Powder with a Nd: YAG Laser Source, Acta Mater., 2003, 51(6), p 1651–1662

    Article  CAS  Google Scholar 

  6. A. Simchi and H. Pohl, Direct Laser Sintering of Iron-Graphite Powder Mixture, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2004, 383(2), p 191–200

    Google Scholar 

  7. A. Simchi, Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2006, 428(1–2), p 148–158

    Google Scholar 

  8. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Selective Laser Melting of Iron-Based Powder, J. Mater. Process. Technol., 2004, 149(1–3), p 616–622

    Article  CAS  Google Scholar 

  9. Y. Wang, J. Bergstrom, and C. Burman, Characterization of an Iron-Based Laser Sintered Material, J. Mater. Process. Technol., 2006, 172(1), p 77–87

    Article  CAS  Google Scholar 

  10. A. Simchi and H. Pohl, Effects of Laser Sintering Processing Parameters on the Microstructure and Densification of Iron Powder, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2003, 359(1–2), p 119–128

    Google Scholar 

  11. M.L. Sun, L. Lu, and J.Y.H. Fuh, Microstructure and Properties of Fe-Base Alloy Fabricated Using Selective Laser Melting, 2nd International Symposium on Laser Precision Microfabrication, I. Miyamoto, Y.F. Lu, K. Sugioka, and J.J. Dubowski, Ed., Singapore, 2001, p 139–142

  12. K.A. Mumtaz, P. Erasenthiran, and N. Hopkinson, High Density Selective Laser Melting of Waspaloy (R), J. Mater. Process. Technol., 2008, 195(1–3), p 77–87

    Article  CAS  Google Scholar 

  13. C.P. Paul, P. Ganesh, S.K. Mishra, P. Bhargava, J. Negi, and A.K. Nath, Investigating Laser Rapid Manufacturing for Inconel-625 Components, Opt. Laser Technol., 2007, 39(4), p 800–805

    Article  Google Scholar 

  14. K. Mumtaz and N. Hopkinson, Top Surface and Side Roughness of Inconel 625 Parts Processed Using Selective Laser Melting, Rapid Prototyping J., 2009, 15(2), p 96–103

    Article  Google Scholar 

  15. H.H. Zhu, L. Lu, and J.Y.H. Fuh, Development and Characterisation of Direct Laser Sintering Cu-Based Metal Powder, J. Mater. Process. Technol., 2003, 140, p 314–317

    Article  CAS  Google Scholar 

  16. D.D. Gu and Y.F. Shen, Development and Characterisation of Direct Laser Sintering Multicomponent Cu Based Metal Powder, Powder Metall., 2006, 49(3), p 258–264

    Article  CAS  Google Scholar 

  17. S.R. Pogson, P. Fox, C.J. Sutcliffe, and W. O’Neill, The Production of Copper Parts Using DMLR, Rapid Prototyping J., 2003, 9(5), p 334–343

    Article  Google Scholar 

  18. W.H. Wu, Y.Q. Yang, and Y.L. Huang, Direct Manufacturing of Cu-Based Alloy Parts by Selective Laser Melting, Chin. Opt. Lett., 2007, 5(1), p 37–40

    CAS  Google Scholar 

  19. D.A. Hollander, M. von Walter, T. Wirtz, R. Sellei, B. Schmidt-Rohlfing, O. Paar, and H.J. Erli, Structural, Mechanical and In Vitro Characterization of Individually Structured Ti-6Al-4V Produced by Direct Laser Forming, Biomaterials, 2006, 27(7), p 955–963

    Article  CAS  Google Scholar 

  20. K. Osakada and M. Shiomi, Flexible Manufacturing of Metallic Products by Selective Laser Melting of Powder, Int. J. Mach. Tools Manuf., 2006, 46(11), p 1188–1193

    Article  Google Scholar 

  21. D.D. Gu and Y.F. Shen, WC-Co Particulate Reinforcing Cu Matrix Composites Produced by Direct Laser Sintering, Mater. Lett., 2006, 60(29–30), p 3664–3668

    Article  CAS  Google Scholar 

  22. D.D. Gu, Z.Y. Wang, Y.F. Shen, Q. Li, and Y.F. Li, In Situ TiC Particle Reinforced Ti-Al Matrix Composites: Powder Preparation by Mechanical Alloying and Selective Laser Melting Behavior, Appl. Surf. Sci., 2009, 255(22), p 9230–9240

    Article  CAS  Google Scholar 

  23. H.H. Soon and H.J. Ryu, Combination of Mechanical Alloying and Two-Stage Sintering of a 93W-5.6Ni-1.4Fe Tungsten Heavy Alloy, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 2003, 344(1–2), p 253–260

    Google Scholar 

  24. A. Upadhyaya, S.K. Tiwari, and P. Mishra, Microwave Sintering of W-Ni-Fe Alloy, Scr. Mater., 2007, 56(1), p 5–8

    Article  CAS  Google Scholar 

  25. J. Shen, L. Campbell, P. Suri, and R.M. German, Quantitative Microstructure Analysis of Tungsten Heavy Alloys (W-Ni-Cu) During Initial Stage Liquid Phase Sintering, Int. J. Refract. Met. Hard Mater., 2005, 23, p 99–108

    Article  CAS  Google Scholar 

  26. S. Das, Physical Aspects of Processing Control in Selective Laser Sintering of Metals, Adv. Eng. Mater., 2003, 5, p 701–711

    Article  CAS  Google Scholar 

  27. A. Simchi, F. Petzoldt, and H. Pohl, Direct Metal Laser Sintering: Material Considerations and Mechanisms of Particle Bonding, Int. J. Powder Metall., 2001, 37(2), p 49–61

    CAS  Google Scholar 

  28. P. Wang, Powder Metallurgy, Beijing Technology University, Metallurgy Industry Publishing Company, Beijing, 2000 (in Chinese)

    Google Scholar 

  29. T.B. Massalski, Binary Alloy Phase, ASM International, Material Park, OH, 1996

    Google Scholar 

  30. D.D. Gu, Y.F. Shen, J.L. Yang, and Y. Wang, Effects of Processing Parameters on Direct Laser Sintering of Multicomponent Cu Based Metal Powder, Mater. Sci. Technol., 2006, 22(12), p 1449–1455

    Article  CAS  Google Scholar 

  31. D.D. Gu, Y.F. Shen, and X.J. Wu, Formation of a Novel W-Rim/Cu-Core Structure During Direct Laser Sintering of W-Cu Composite System, Mater. Lett., 2008, 62(12–13), p 1765–1768

    Article  CAS  Google Scholar 

  32. K. Lai, Y. Yang, and L. Zhang, Fiber Laser and its Applications in Rapid Prototyping of Selective Laser Melting, Laser Optoelectron. Prog., 2006, 43, p 32–36 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Open fund of State Key Laboratory of Powder Metallurgy of Central South University of China (2008112022). The authors also thank the Analytic and Testing Centre of Huazhong University of Science and Technology for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qizhou Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Cai, Q., Liu, J. et al. Research on Process and Microstructure Formation of W-Ni-Fe Alloy Fabricated by Selective Laser Melting. J. of Materi Eng and Perform 20, 1049–1054 (2011). https://doi.org/10.1007/s11665-010-9720-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-010-9720-3

Keywords

Navigation