Skip to main content
Log in

Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting Under Different Scanning Speeds

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work discussed the effects of different scanning speeds (800, 1083, 1200 and 1400 mm/s) on the microstructure of 316L stainless steel manufactured by selective laser melting (SLM) and the related corrosion behavior. Results showed that there were more voids with faster scanning speeds, and there were oxide powder and non-melt silicon inside the defects. The SLM 316L exhibited a full gamma austenite phase filled with sub-grains, and the average grain size of SLM-1083 mm/s 316L was approximately 42 μm, three times larger than that of the quenched 316L. The pitting potentials for the SLM 316L were all approximately 300 mV higher than that of the quenched due to the modification of inclusions in SLM, but the corrosion rate for the SLM 316L was faster, which was attributed to the voids and unstable passive film. The number of pitting sites increased with the scanning speed, and the pits occurred preferentially at the voids in SLM 316L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, Selective Laser Melting of Iron-Based Powder, J. Mater. Process. Technol., 2004, 149(1–3), p 616–622

    Article  Google Scholar 

  2. F. Cardaropoli, F. Caiazzo, and V. Sergi, Evolution of Direct Selective Laser Sintering of Metals, Adv. Mater. Res. Switz., 2012, 383–390, p 6252–6257

    Google Scholar 

  3. X.C. Wang, T. Laoui, J. Bonse, J.P. Kruth, B. Lauwers, and L. Froyen, Direct Selective Laser Sintering of Hard Metal Powders: Experimental Study and Simulation, Int. J. Adv. Manuf. Technol., 2002, 19(5), p 351–357

    Article  Google Scholar 

  4. H.P. Duan, X. Liu, X.Z. Ran, J. Li, and D. Liu, Mechanical Properties and Microstructure of 3D-Printed High Co–Ni Secondary Hardening Steel Fabricated by Laser Melting Deposition, Int. J. Miner. Metall. Mater., 2017, 24(9), p 1027–1033

    Article  Google Scholar 

  5. E.C. Santos, M. Shiomi, K. Osakada, and T. Laoui, Rapid Manufacturing of Metal Components by Laser Forming, Int. J. Mach. Tool Manuf., 2006, 46(12–13), p 1459–1468

    Article  Google Scholar 

  6. Y.J. Li, X.P. Li, L.C. Zhang, and T.B. Sercombe, Processing and Properties of Topologically Optimised Biomedical Ti–24Nb–4Zr–8Sn Scaffolds Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2015, 642, p 268–278

    Article  Google Scholar 

  7. Y.J. Liu, S.J. Li, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, and L.C. Zhang, Microstructure, Defects and Mechanical Behavior of Beta-Type Titanium Porous Structures Manufactured by Electron Beam Melting and Selective Laser Melting, Acta Mater., 2016, 113, p 56–67

    Article  Google Scholar 

  8. N.W. Dai, J.X. Zhang, Y. Chen, and L.C. Zhang, Heat Treatment Degrading the Corrosion Resistance of Selective Laser Melted Ti–6Al–4V Alloy, J. Electrochem. Soc., 2017, 164(7), p C428–C434

    Article  Google Scholar 

  9. J. Suryawanshi, K.G. Prashanth, and U. Ramamurty, Mechanical Behavior of Selective Laser Melted 316L Stainless Steel, Mater. Sci. Eng. A, 2017, 696, p 113–121

    Article  Google Scholar 

  10. R. Munoz-Moreno, V.D. Divya, S.L. Driver, O.M.D.M. Messe, T. Illston, S. Baker, M.A. Carpenter, and H.J. Stone, Effect of Heat Treatment on the Microstructure, Texture and Elastic Anisotropy of the Nickel-Based Superalloy CM247LC Processed by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 674, p 529–539

    Article  Google Scholar 

  11. G. Miranda, S. Faria, F. Bartolomeu, E. Pinto, S. Madeira, A. Mateus, P. Carreira, N. Alves, F.S. Silva, and O. Carvalho, Predictive Models for Physical and Mechanical Properties of 316L Stainless Steel Produced by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 657, p 43–56

    Article  Google Scholar 

  12. M.S.F. de Lima and S. Sankare, Microstructure and Mechanical Behavior of Laser Additive Manufactured AISI 316 Stainless Steel Stringers, Mater. Des., 2014, 55, p 526–532

    Article  Google Scholar 

  13. D.D. Gu and Y.F. Shen, Balling Phenomena in Direct Laser Sintering of Stainless Steel Powder: Metallurgical Mechanisms and Control Methods, Mater. Des., 2009, 30(8), p 2903–2910

    Article  Google Scholar 

  14. L. Vitos, P.A. Korzhavyi, and B. Johansson, Elastic Property Maps of Austenitic Stainless Steels, Phys. Rev. Lett., 2002, 88(15), p 155501 (art. no. 055501)

    Article  Google Scholar 

  15. M. Sumita, T. Hanawa, and S.H. Teoh, Development of Nitrogen-Containing Nickel-Free Austenitic Stainless Steels for Metallic Biomaterials: Review, Mater. Sci. Eng., C, 2004, 24(6–8), p 753–760

    Article  Google Scholar 

  16. Y. Sun, A. Moroz, and K. Alrbaey, Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel, J. Mater. Eng. Perform., 2014, 23(2), p 518–526

    Article  Google Scholar 

  17. M. Zietala, T. Durejko, M. Polanski, I. Kunce, T. Plocinski, W. Zielinski, M. Lazinska, W. Stepniowski, T. Czujko, K.J. Kurzydlowski, and Z. Bojar, The Microstructure, Mechanical Properties and Corrosion Resistance of 316 L Stainless Steel Fabricated Using Laser Engineered Net Shaping, Mater. Sci. Eng. A, 2016, 677, p 1–10

    Article  Google Scholar 

  18. N.A.W. Dai, L.C. Zhang, J.X. Zhang, X. Zhang, Q.Z. Ni, Y. Chen, M.L. Wu, and C. Yang, Distinction in Corrosion Resistance of Selective Laser Melted Ti–6Al–4V Alloy on Different Planes, Corros. Sci., 2016, 111, p 703–710

    Article  Google Scholar 

  19. L.J. Zheng, Y.Y. Liu, S.B. Sun, and H. Zhang, Selective Laser Melting of Al–8.5Fe–1.3V–1.7Si Alloy: Investigation on the Resultant Microstructure and Hardness, Chin. J. Aeronaut., 2015, 28(2), p 564–569

    Article  Google Scholar 

  20. T. Vilaro, C. Colin, J.D. Bartout, L. Naze, and M. Sennour, Microstructural and Mechanical Approaches of the Selective Laser Melting Process Applied to a Nickel-Base Superalloy, Mater. Sci. Eng. A, 2012, 534, p 446–451

    Article  Google Scholar 

  21. K. Saeidi, X. Gao, Y. Zhong, and Z.J. Shen, Hardened Austenite Steel with Columnar Sub-grain Structure Formed by Laser Melting, Mater. Sci. Eng. A, 2015, 625, p 221–229

    Article  Google Scholar 

  22. Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, A. Taylor, P.D. Hodgson, and D. Fabijanic, On the Enhanced Corrosion Resistance of a Selective Laser Melted Austenitic Stainless Steel, Scr. Mater., 2017, 141, p 94–98

    Article  Google Scholar 

  23. Y.F. Cheng, C. Yang, and J.L. Luo, Determination of the Diffusivity of Point Defects in Passive Films on Carbon Steel, Thin Solid Films, 2002, 416(1–2), p 169–173

    Article  Google Scholar 

  24. D.C. Kong, A.N. Xu, C.F. Dong, F.X. Mao, K. Xiao, X.G. Li, and D.D. Macdonald, Electrochemical Investigation and Ab Initio Computation of Passive Film Properties on Copper in Anaerobic Sulphide Solutions, Corros. Sci., 2017, 116, p 34–43

    Article  Google Scholar 

  25. M.J. Carmezim, A.M. Simoes, M.F. Montemor, and M.D. Belo, Capacitance Behaviour of Passive Films on Ferritic and Austenitic Stainless Steel, Corros. Sci., 2005, 47(3), p 581–591

    Article  Google Scholar 

  26. A. Fattah-alhosseini, M.A. Golozar, A. Saatchi, and K. Raeissi, Effect of Solution Concentration on Semiconducting Properties of Passive Films Formed on Austenitic Stainless Steels, Corros. Sci., 2010, 52(1), p 205–209

    Article  Google Scholar 

  27. E. Sikora and D.D. Macdonald, Defining the Passive State, Solid State Ionics, 1997, 94(1–4), p 141–150

    Article  Google Scholar 

  28. R.S. Dutta, R. Purandare, A. Lobo, S.K. Kulkarni, and G.K. Dey, Microstructural Aspects of the Corrosion of Alloy 800, Corros. Sci., 2004, 46(12), p 2937–2953

    Article  Google Scholar 

  29. J. Capek, M. Machova, M. Fousova, J. Kubasek, D. Vojtech, J. Fojt, E. Jablonska, J. Lipov, and T. Ruml, Highly Porous, Low Elastic Modulus 316L Stainless Steel Scaffold Prepared by Selective Laser Melting, Mater. Sci. Eng. C, 2016, 69, p 631–639

    Article  Google Scholar 

  30. G. Sander, S. Thomas, V. Cruz, M. Jurg, N. Birbilis, X. Gao, M. Brameld, and C.R. Hutchinson, On the Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting, J. Electrochem. Soc., 2017, 164(6), p C250–C257

    Article  Google Scholar 

  31. D. Kong, C. Dong, Z. Zheng, F. Mao, A. Xu, X. Ni, C. Man, J. Yao, K. Xiao, and X. Li, Surface Monitoring for Pitting Evolution into Uniform Corrosion on Cu–Ni–Zn Ternary Alloy in Alkaline Chloride Solution: Ex Situ LCM and In Situ SECM, Appl. Surf. Sci., 2018, 440, p 245–257

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Materials Genome Institute No.5 (Project No. 16DZ2260605), Shanghai Sailing Program (Project Number 17YF1405400) and the project to strengthen industrial development at the grass-roots level (Project No. TC160A310/19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenheng Wu or Liang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Kong, D., Wu, W. et al. Corrosion Behavior of 316L Stainless Steel Fabricated by Selective Laser Melting Under Different Scanning Speeds. J. of Materi Eng and Perform 27, 3667–3677 (2018). https://doi.org/10.1007/s11665-018-3446-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3446-z

Keywords

Navigation