Skip to main content
Log in

Cost-Effective and Fast Fabrication of Copper–Cobalt Electrochemical Glucose Sensor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This study aimed to develop porous Cu and Cu-Co coatings using a rapid one-step electrodeposition technique. The coatings were characterized using scanning electron microscopy and x-ray diffraction. Pencil graphite electrodes were utilized as substrates, and the non-enzymatic glucose-sensing capabilities of the coatings were evaluated using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The results demonstrated that the sensor exhibited a wide linear response range and could detect glucose within two concentration ranges (20 μM–1 mM and 1–7.5 mM) at a potential of 0.50 V in 0.1 M NaOH. The fabrication process of the sensing electrodes was straightforward, highlighting the efficiency of Cu-Co porous coatings as a nanocomposite for glucose detection. In summary, the study presents a promising method for the production of efficient glucose sensors with potential applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Lai, Y. Yi, P. Zhu, J. Shen, K. Wu, L. Zhang, and J. Liu, Polyaniline-based glucose biosensor: a review. J. Electroanal. Chem. 782, 138 (2016).

    Article  CAS  Google Scholar 

  2. V.A. Buzanovskii, Methods for the determination of glucose in blood. Part 1. Rev. J. Chem. 5, 30 (2015).

    Article  CAS  Google Scholar 

  3. S. Besagarhally Shivappa, and A. Krishnegowda, Spectrophotometric determination of glucose in human serum samples using para-phenylenediamine and alpha-naphthol as a chromogenic reagent. Int. J. Chem. Kinet. 54, 681 (2022).

    Article  CAS  Google Scholar 

  4. T. Hao, X. Wei, Y. Nie, Y. Xu, K. Lu, Y. Yan, and Z. Zhou, Surface modification and ratiometric fluorescence dual function enhancement for visual and fluorescent detection of glucose based on dual-emission quantum dots hybrid. Sens. Actuators B Chem. 230, 70 (2016).

    Article  CAS  Google Scholar 

  5. D. Rodbard, Continuous glucose monitoring: a review of successes, challenges, and opportunities. Diabetes Technol. Ther. 18, S23 (2016).

    Article  Google Scholar 

  6. M. Dong, H. Hu, S. Ding, and C. Wang, High-performance non-enzymatic glucose-sensing electrode fabricated by α-nickel hydroxide-reduced graphene oxide nanocomposite on nickel foam substrat. J. Mater. Sci. Mater. Electron. 32, 19327 (2021).

    Article  CAS  Google Scholar 

  7. M. Dong, H. Hu, S. Ding, C. Wang, and L. Li, Fabrication of NiMn2O4 nanosheets on reduced graphene oxide for non-enzymatic detection of glucose. Mater. Technol. 36, 203 (2021).

    Article  CAS  Google Scholar 

  8. H. Kawakami, Y. Ito, Y.A. Chien, C.Y. Chen, W.T. Chiu, P. Chakraborty, T. Nakamoto, M. Sone, and T.F.M. Chang, Development of polypyrrole/nano-gold composite for non-enzymatic glucose sensors. Micro Nano Eng. 14, 100109 (2022).

    Article  CAS  Google Scholar 

  9. N. Pal, S. Banerjee, and A. Bhaumik, A facile route for the syntheses of Ni(OH)2 and NiO nanostructures as potential candidates for non-enzymatic glucose sensor. J. Colloid Interface Sci. 516, 121 (2018).

    Article  CAS  Google Scholar 

  10. J. Yang, M. Cho, C. Pang, and Y. Lee, Highly sensitive non-enzymatic glucose sensor based on over-oxidized polypyrrole nanowires modified with Ni(OH)2 nanoflakes. Sens. Actuators B Chem. 211, 93 (2015).

    Article  CAS  Google Scholar 

  11. K.K. Naik, S. Sahoo, and C.S. Rout, Facile electrochemical growth of spinel copper cobaltite nanosheets for non-enzymatic glucose sensing and supercapacitor applications. Microporous Mesoporous Mater. 244, 226 (2017).

    Article  CAS  Google Scholar 

  12. X. Liu, W. Yang, L. Chen, and J. Jia, Three-dimensional copper foam supported CuO nanowire arrays: an efficient non-enzymatic glucose sensor. Electrochim. Acta. 235, 519 (2017).

    Article  CAS  Google Scholar 

  13. D.W. Hwang, S. Lee, M. Seo, and T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal. Chim. Acta 1033, 1 (2018).

    Article  CAS  Google Scholar 

  14. L. Wang, J. Bai, X. Bo, X. Zhang, and L. Guo, A novel glucose sensor based on ordered mesoporous carbon–Au nanoparticles nanocomposites. Talanta 83, 1386 (2011).

    Article  CAS  Google Scholar 

  15. H.X. Wu, W.M. Cao, Y. Li, G. Liu, Y. Wen, H.F. Yang, and S.P. Yang, In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim. Acta 55, 3734 (2010).

    Article  CAS  Google Scholar 

  16. T. Feng, C. Yu, D. Manaye Kabtamu, L. Bu, F. Li, and Y. Wang, Cu2O nanowires with exposed {111} facet for nonenzymatic detection of glucose in complex biological fluids. Chem. Eng. J. 429, 132267 (2022).

    Article  CAS  Google Scholar 

  17. L.C. Jiang and W. De Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 25, 1402 (2010).

    Article  CAS  Google Scholar 

  18. M. Pak, A. Moshaii, H. Siampour, S. Abbasian, and M. Nikkhah, Cobalt-copper bimetallic nanostructures prepared by glancing angle deposition for non-enzymatic voltammetric determination of glucose. Microchim. Acta 187, 276 (2020).

    Article  CAS  Google Scholar 

  19. J. Gupta, S. Arya, S. Verma, A. Singh, A. Sharma, B. Singh, Prerna, R. Sharma, Performance of template-assisted electrodeposited copper/cobalt bilayered nanowires as an efficient glucose and uric acid senor. Mater. Chem. Phys. 238, 121969 (2019)

  20. P.V. Suneesh, V. Sara Vargis, T. Ramachandran, B.G. Nair, and T.G. Satheesh Babu, Co-Cu alloy nanoparticles decorated TiO2 nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose. Sens. Actuators B Chem. 215, 337 (2015).

    Article  CAS  Google Scholar 

  21. K.O. Oskay and B. Özkan, Enzyme-free nickel electrochemical glucose sensor fabricated on pencil graphite electrode by electrodeposition. J. Mater. Sci. Mater. Electron. 34, 645 (2023).

    Article  CAS  Google Scholar 

  22. G.R. Pattanaik, S.C. Kashyap, and D.K. Pandya, Structure and giant magnetoresistance in electrodeposited granular Cu-Co films. J. Magn. Magn. Mater. 219, 309 (2000).

    Article  CAS  Google Scholar 

  23. H. Zhang, W. Jia, H. Sun, X. Zhang, L. Guo, and J. Hu, Electrochemical preparation and magnetic properties of Co-Cu nanometric granular alloy films. Bull. Mater. Sci. 42, 1 (2019).

    Article  Google Scholar 

  24. M. Harry, M. Chowdhury, F. Cummings, and C.J. Arendse, Elemental Cu doped Co3O4 thin film for highly sensitive non-enzymatic glucose detection. Sens. Bio-Sens. Res. 23, 100262 (2019).

    Article  Google Scholar 

  25. L. Wang, Y. Zheng, X. Lu, Z. Li, L. Sun, and Y. Song, Dendritic copper-cobalt nanostructures/reduced graphene oxide-chitosan modified glassy carbon electrode for glucose sensing. Sens. Actuators B Chem. 195, 1 (2014).

    Article  CAS  Google Scholar 

  26. A. Ateş and K.O. Oskay, Preparation and characterization of nanosized Fe3O4-biochar electrocatalysts with large surface area for H2O2 sensing. Surf. Interfaces 29, 101733 (2022).

    Article  Google Scholar 

  27. N. Khalaf, T. Ahamad, M. Naushad, N. Al-hokbany, S.I. Al-Saeedi, S. Almotairi, and S.M. Alshehri, Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor. Int. J. Biol. Macromol. 146, 763 (2020).

    Article  CAS  Google Scholar 

  28. M. Fu, Z. Zhu, W. Chen, H. Yu, and R. Lv, Carbon cloth supported flower-like porous nickel-based electrodes boosting ion/charge transfer characteristics of flexible supercapacitors. Carbon N. Y. 199, 520 (2022).

    Article  CAS  Google Scholar 

  29. H.M. Yadav and J.J. Lee, One-pot synthesis of copper nanoparticles on glass: applications for non-enzymatic glucose detection and catalytic reduction of 4-nitrophenol. J. Solid State Electrochem. 23, 503 (2019).

    Article  CAS  Google Scholar 

  30. X. Zhang, G. Wang, W. Zhang, Y. Wei, and B. Fang, Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens. Bioelectron. 24, 3395 (2009).

    Article  CAS  Google Scholar 

  31. S.E. Kim and A. Muthurasu, Highly oriented nitrogen-doped carbon nanotube integrated bimetallic cobalt copper organic framework for non-enzymatic electrochemical glucose and hydrogen peroxide sensor. Electroanalysis 33, 1333 (2021).

    Article  CAS  Google Scholar 

  32. S. Liu, B. Yu, and T. Zhang, A novel non-enzymatic glucose sensor based on NiO hollow spheres. Electrochim. Acta 102, 104 (2013).

    Article  CAS  Google Scholar 

  33. A.S. Patil, R.T. Patil, G.M. Lohar, and V.J. Fulari, Facile synthesis of CuO nanostructures for non-enzymatic glucose sensor by modified SILAR method. Appl. Phys. A Mater. Sci. Process. 127, 1 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kürşad Oğuz Oskay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeynalova, A., Oskay, K.O. Cost-Effective and Fast Fabrication of Copper–Cobalt Electrochemical Glucose Sensor. J. Electron. Mater. 52, 6791–6799 (2023). https://doi.org/10.1007/s11664-023-10623-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10623-3

Keywords

Navigation