Skip to main content

Advertisement

Log in

Facile synthesis of CuO nanostructures for non-enzymatic glucose sensor by modified SILAR method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The authors developed CuO nanorice, using a modified SILAR method for non-enzymatic glucose sensing. The copper oxide was deposited onto the substrate of stainless steel and distinguished by various characterization techniques. A monoclinic structure that is substantially functional for enzyme less glucose sensors have been deposited with polycrystalline CuO. The rice-like morphology of CuO confirms FE-SEM. The electrochemical efficiency of CuO electrodes is calculated by the adoption of cyclic voltammetry (CV) and chronoamperometry (CA) in a 0.1 M NaOH solution with a potential of + 0.6 V (vs. Ag/AgCl). This sensor offers a linear response from 0 to 3 mM to glucose concentration and has a sensitivity of 1017 μAmM−1 cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

References

  1. C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors: a review. RSC Adv. 3, 4473–4491 (2013)

    Article  ADS  Google Scholar 

  2. C. He, J. Liu, Q. Zhang, C. Wu, A novel stable amperometric glucose biosensor based on the adsorption of glucose oxidase on poly(methyl methacrylate)-bovine serum albumin core-shell nanoparticles. Sens. Actuators, B Chem. 166–167, 802–808 (2012)

    Article  Google Scholar 

  3. H. Deng, A.K.L. Teo, Z. Gao, An interference-free glucose biosensor based on a novel low potential redox polymer mediator. Sens. Actuators B 191, 522–528 (2014)

    Article  Google Scholar 

  4. X. Lin, Y. Ni, S. Kokot, Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples. Electrochim. Acta. 133, 484–491 (2014)

    Article  ADS  Google Scholar 

  5. D. Ye, G. Liang, H. Li, J. Luo, S. Zhang, H. Chen, J. Kong, A novel non-enzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116, 223–230 (2013)

    Article  Google Scholar 

  6. S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta. 556, 46–57 (2006)

    Article  Google Scholar 

  7. K. Khun, Z.H. Ibupoto, X. Liu, V. Beni, M. Willander, The ethylene glycol template assisted hydrothermal synthesis of Co3O4 nanowires; Structural characterization and their application as glucose non-enzymatic sensor. Mater. Sci. Eng. B 194, 94–100 (2015)

    Article  Google Scholar 

  8. Y. Zhong, T. Shi, Z. Liu, S. Cheng, Y. Huang, X. Tao, G. Liao, Z. Tang, Ultrasensitive non-enzymatic glucose sensors based on different copper oxide nanostructures by in-situ growth. Sens. Actuators, B Chem. 236, 326–333 (2016)

    Article  Google Scholar 

  9. S. Liu, B. Yu, T. Zhang, A novel non-enzymatic glucose sensor based on NiO hollow spheres. Electrochim. Acta. 102, 104–107 (2013)

    Article  Google Scholar 

  10. X. Cao, N. Wang, A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136, 4241–4246 (2011)

    Article  ADS  Google Scholar 

  11. J. Wang, W. De Zhang, Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose. Electrochim. Acta. 56, 7510–7516 (2011)

    Article  Google Scholar 

  12. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208–337 (2014)

    Article  Google Scholar 

  13. N. Mukherjee, B. Show, S.K. Maji, U.M.S.K. Bhar, B.C. Mitra, G.G. Khan, A. Mondal, CuO nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 65, 3248–3250 (2011)

    Article  Google Scholar 

  14. F. Bayansal, B. Sahin, M. Yksel, N. Biyikli, H.A. Cetinkara, H.S. Gder, Influence of coumarin as an additive on CuO nanostructures prepared by successive ionic layer adsorption and reaction (SILAR) method. J. Alloys Compd 566, 78–82 (2013)

    Article  Google Scholar 

  15. A.S. Patil, G.M. Lohar, V.J. Fulari, Structural, morphological, optical and photoelectrochemical cell properties of copper oxide using modified SILAR method. J. Mater. Sci. Mater. Electron. 27, 9550–9557 (2016)

    Article  Google Scholar 

  16. H. Qin, Z. Zhang, X. Liu, Y. Zhang, J. Hu, Room-temperature ferromagnetism in CuO sol-gel powders and films. J. Magn. Magn. Mater. 322, 1994–1998 (2010)

    Article  ADS  Google Scholar 

  17. F.P. Albores, W.A. Flores, P.A. Madrid, E.R. Valdovinos, M.V. Zapata, F.P. Delgado, M.M. Yoshida, Growth and microstructural study of CuO covered ZnO nanorods. J. Cryst. Growth 351, 77–82 (2012)

    Article  ADS  Google Scholar 

  18. J. Xu, K. Yu, J. Wu, D. Shang, L. Li, Y. Xu, Z. Zhu, Synthesis, field emission and humidity sensing characteristics of honeycomb-like CuO. J. Phys. D Appl. Phys. 42, 075417–075424 (2009)

    Article  ADS  Google Scholar 

  19. M. Vila, C.D. Guerra, J. Piqueras, Optical and magnetic properties of CuO nanowires grown by thermal oxidation. J. Phys. D Appl. Phys. 43, 135403–135409 (2010)

    Article  ADS  Google Scholar 

  20. J.K. Feng, H. Xia, M.O. Lai, L. Lu, Electrochemical performance of CuO nanocrystal film fabricated by room temperature sputtering. Mater. Res. Bull. 46, 424–427 (2011)

    Article  Google Scholar 

  21. A.S. Patil, M.D. Patil, G.M. Lohar, S.T. Jadhav, V.J. Fulari, Supercapacitive properties of CuO thin films using modified SILAR method. Ionics 23, 1259–1266 (2017)

    Article  Google Scholar 

  22. I. Singh, R.K. Bedi, Studies and correlation among the structural, electrical and gas response properties of aerosol spray deposited self assembled nanocrystalline CuO. Appl. Surf. Sci. 257, 7592–7599 (2011)

    Article  ADS  Google Scholar 

  23. G. He, L. Wang, One-step preparation of ultra-thin copper oxide nanowire arrays/copper wire electrode for non-enzymatic glucose sensor. Ionics 24, 3167–3175 (2018)

    Article  Google Scholar 

  24. Y. Zhang, Y. Liu, L. Su, Z. Zhang, D. Huo, C. Hou, Y. Lei, CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators B Chem. 191, 86–93 (2014)

    Article  Google Scholar 

  25. Z. Yang, J. Feng, J. Qiao, Y. Yan, Q. Yu, K. Sun, Copper oxide nanoleaves decorated multi-walled carbon nanotube as platform for glucose sensing. Anal. Methods 4, 1924–1926 (2012)

    Article  Google Scholar 

  26. E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, CuO nanospheres based non-enzymatic glucose sensor. Electroanalysis 20, 2482–2486 (2008)

    Article  Google Scholar 

  27. R.S. Reddy, A. Sreedhar, A.S. Reddy, S. Uthanna, Effect of film thickness on the structural morphological and optical properties of nanocrystalline ZnO films formed by RF magnetron sputtering. Adv. Mater. Lett. 3(3), 239–245 (2012)

    Article  Google Scholar 

  28. H.D. Shelke, A.C. Lokhande, V.S. Raut, A.M. Patil, J.H. Kim, C.D. Lokhande, Facile synthesis of Cu2SnS3 thin films grown by SILAR method: effect of film thickness. J. Mater. Sci.: Mater. Electron. 28(11), 7912–7921 (2017)

    Google Scholar 

  29. S.K. Shinde, V.J. Fulari, D.Y. Kim, N.C. Maile, R.R. Koli, H.D. Dhaygude, G.S. Ghodake, Chemical synthesis of flower-like hybrid Cu(OH)2/CuO electrode: application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance. Coll. Surf. B Biointerfaces 156, 165–174 (2017)

    Article  Google Scholar 

  30. H. Siddiqui, M.S. Qureshi, F.Z. Haque, Biosynthesis of flower-shaped CuO nanostructures and their photocatalytic and antibacterial activities. Nano-Micro Lett. 12, 1–11 (2020)

    Article  Google Scholar 

  31. G.M. Lohar, S.T. Jadhav, M.V. Takale, R.A. Patil, Y.R. Ma, M.C. Rath, V.J. Fulari, Photoelectrochemical cell studies of Fe2+ doped ZnSe nanorods using the potentiostatic mode of electrodeposition. J. Coll. Interface Sci. 458, 136–146 (2015)

    Article  ADS  Google Scholar 

  32. G.M. Lohar, S.T. Jadhav, H.D. Dhaygude, M.V. Takale, R.A. Patil, Y.R. Ma, M.C. Rath, V.J. Fulari, Studies of properties of Fe3+ doped ZnSe nanoparticles and hollow spheres for photoelectrochemical cell application. J. Alloys Compd. 653, 22–31 (2015)

    Article  Google Scholar 

  33. M. Abdelaziz, E.M. Abdelrazek, Effect of dopant mixture on structural, optical and electron spin resonance properties of polyvinyl alcohol. Phys. B Condens. Matter. 390, 1–9 (2007)

    Article  ADS  Google Scholar 

  34. Y. Xu, D. Chen, X. Jiao, Fabrication of CuO pricky microspheres with tunable size by a simple solution route. J. Phys. Chem. B 109, 13561–13566 (2005)

    Article  Google Scholar 

  35. D.P. Dubal, G.S. Gund, C.D. Lokhande, R. Holze, CuO cauliflowers for supercapacitor application: novel potentiodynamic deposition. Mater. Res. Bull. 48, 923–928 (2013)

    Article  Google Scholar 

  36. H. Siddiqui, M.R. Parra, M.M. Malik, F.Z. Haque, Structural and optical properties of Li substituted CuO Nanoparticles. Opt. Quant. Electron. 50, 1–13 (2018)

    Article  Google Scholar 

  37. Z. Changqiong, P. Matthew, Seed layer-assisted chemical bath deposition of CuO films on ITO-coated glass substrates with tunable crystallinity and morphology. Chem. Mater. 26, 2960–2966 (2014)

    Article  Google Scholar 

  38. W.G. Pell, B.E. Conway, Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour. J. Electroanal. Chem. 500, 121–133 (2001)

    Article  Google Scholar 

  39. X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Synthesis of CuO nanostructures and their application for non-enzymatic glucose sensing. Sens. Actuators, B Chem. 144, 220–225 (2010)

    Article  ADS  Google Scholar 

  40. X.M. Miao, R. Yuan, Y.Q. Chai, Y.T. Shi, Y.Y. Yuan, Direct electrocatalytic reduction of hydrogen peroxide based on nafion and copper oxide nanoparticles modified Pt electrode. J. Electroanal. Chem. 612, 157–163 (2008)

    Article  Google Scholar 

  41. P. Salazar, V. Rico, R.R. Amaro, J.P. Espinos, A.R.G. Elipe, New copper wide range nanosensor electrode prepared by physical vapor deposition at oblique angles for the non-enzimatic determination of glucose. Electrochim. Acta. 169, 195–201 (2015)

    Article  Google Scholar 

  42. X. Zhang, S. Sun, J. Lv, L. Tang, C. Kong, X. Song, Z. Yang, Nanoparticle-aggregated CuO nanoellipsoids for high-performance non-enzymatic glucose detection. J. Mater. Chem. A 2, 10073–10080 (2014)

    Article  Google Scholar 

  43. R. Ahmad, N. Tripathy, Y.B. Hahn, A. Umar, A.A. Ibrahim, S.H. Kim, A robust enzymeless glucose sensor based on CuO nanoseed modified electrodes. Dalt. Trans. 44, 12488–12492 (2015)

    Article  Google Scholar 

  44. J. Chen, W. De Zhang, J.S. Ye, Non-enzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem. Commun. 10, 1268–1271 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful for the financial support through DST-PURSE Phase-II (2018-2022) and UGC DSA-Phase II (2018-2023). The Physics Instrumentation Facility Centre (PIFC), Department of Physics, Shivaji University, is greatly acknowledged for providing characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay J. Fulari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, A.S., Patil, R.T., Lohar, G.M. et al. Facile synthesis of CuO nanostructures for non-enzymatic glucose sensor by modified SILAR method. Appl. Phys. A 127, 101 (2021). https://doi.org/10.1007/s00339-020-04258-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04258-y

Keywords

Navigation