Skip to main content
Log in

Synthesis of Copper Nanoparticles in the Ordered Mesoporous Carbon (Cu@OMC) for Glucose Detection

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A composite of copper nanoparticles or nanoclusters wrapped in ordered mesoporous carbon material (Cu@OMC), with a high specific surface area and large pore volume, was synthesized via a double-solvent method. The structure and morphology of the as-synthesized material were comprehensively characterized by x-ray diffraction, x-ray photoelectron spectroscopy, nitrogen adsorption–desorption measurement, energy dispersive x-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy. Based on the advantageous functions of Cu nanoparticles and OMC, the functional composite-modified glassy carbon electrode (GCE) demonstrated high electrocatalytic activity toward the oxidation of glucose. Thus, a non-enzymatic glucose sensor was constructed based on the Cu@OMC-modified GCE (Cu@OMC/GCE) due to the electrocatalytic activity of glucose. The proposed sensor exhibited appealing advantages of high sensitivity, anti-interference ability, rapid response, stability, and good reproducibility in the detection of glucose at an optimal potential of + 0.40 V, thus signaling the great potential of Cu@OMC in the development of reliable non-enzymatic glucose sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Sakamoto, M. Kaneda, O. Terasaki, Y.D. Zhao, J.M. Kim, G. Stucky, H.J. Shin, and R. Ryoo, Direct Imaging of the Pores and Cages of Three-Dimensional Mesoporous Materials. Nature 408, 449 (2000).

    Article  CAS  Google Scholar 

  2. Y.H. Zhang, F. Gao, H.Q. Wan, C. Wu, Y. Kong, X.C. Wu, B. Zhao, L. Dong, and Y. Chen, Synthesis, Characterization of Bimetallic Ce-Fe-SBA-15 and its Catalytic Performance in the Phenol Hydroxylation. Microporous Mesoporous Mater. 113, 393 (2008).

    Article  CAS  Google Scholar 

  3. A. Chen, Y. Chen, and J.N. Ding, Polystyrene-Core Silica-Shell Composite Abrasives: The Influence of Core Size on Oxide Chemical Mechanical Planarization. J. Electron. Mater. 44, 2522 (2015).

    Article  CAS  Google Scholar 

  4. L. Wu, H.J. Zhang, M.H. Wu, Y.F. Zhong, X.W. Liu, and Z. Jiao, Dual-Templating Synthesis of Multi-Shelled Mesoporous Silica Nanoparticles as Catalyst and Drug Carrier. Microporous Mesoporous Mater. 228, 318 (2016).

    Article  CAS  Google Scholar 

  5. Y.K. Li, P. Zhang, D.Y. Wan, C. Xue, J.T. Zhao, and G.S. Shao, Direct Evidence of 2D/1D Heterojunction Enhancement on Photocatalytic Activity through Assembling MoS2 Nanosheets onto Super-Long TiO2 Nanofibers. Appl. Surf. Sci. 504, 144361 (2020).

    Article  CAS  Google Scholar 

  6. S. Zhang, P. Zhang, B. Li, S.J. Zhang, K.L. Liu, R.H. Hou, X.L. Zhang, S. Ravi, P. Silva, and G.S. Shao, Vertically Aligned Graphene Nanosheets on Multi-Yolk/Shell Structured TiC@C Nanofibers for Stable Li-S Batteries. Energy Stor. Mater. 27, 159 (2020).

    Article  Google Scholar 

  7. S.J. Zhang, P. Zhang, R.H. Hou, B. Li, Y.S. Zhang, K.L. Liu, X.L. Zhang, and G.S. Shao, In Situ Sulfur-Doped Graphene Nanofiber Network as Efficient Metal-Free Electrocatalyst for Polysulfides Redox Reactions in Lithium-Sulfur Batteries. J. Energy Chem. 47, 281 (2020).

    Article  Google Scholar 

  8. J. Zhu, Z. Kónya, V.F. Puntes, I. Kiricsi, C.X. Miao, J.W. Ager, A.P. Alivisatos, and G.A. Somorjai, Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into the Mesoporous SBA-15 Structure. Langmuir 19, 4396 (2003).

    Article  CAS  Google Scholar 

  9. C.M. Yang, M. Kalwei, F. Schüth, and K.J. Chao, Gold Nanoparticles in SBA-15 Showing Catalytic Activity in CO Oxidation. Appl. Catal. A-Gen. 254, 289 (2003).

    Article  CAS  Google Scholar 

  10. Z.J. Wang, Y. Xie, B. Zhao, and C.J. Liu, Synthesis and Characterization of Noble Metal (Pd, Pt, Au, Ag) Nanostructured Materials Confined in the Channels of Mesoporous SBA-15. J. Phys. Chem. C 112, 19818 (2008).

    Article  CAS  Google Scholar 

  11. I. Yuranov, P. Moeckli, E. Suvorova, P. Buffat, L. Kiwi-Minsker, and A. Renken, Pd/SiO2 Catalysts: Synthesis of Pd Nanoparticles with the Controlled Size in Mesoporous Silicas. J. Mol. Catal. A-Chem. 192, 239 (2003).

    Article  CAS  Google Scholar 

  12. Y. Zhang, F.L.Y. Lam, X.J. Hu, P. Sheng, and Z.F. Yan, Fabrication of Copper Nanowire Encapsulated in the Pore Channels of SBA-15 by Metal-Organic Chemical Vapor Deposition. J. Phys. Chem. C 111, 12536 (2007).

    Article  CAS  Google Scholar 

  13. M. Grass, Y. Yue, S.E. Habas, R.M. Rioux, C.I. Teall, P.D. Yang, and G.A. Somorjai, Silver Ion Mediated Shape Control of Platinum Nanoparticles: Removal of Silver by Selective Etching Leads to Increased Catalytic Activity. J. Phys. Chem. C 112, 4797 (2008).

    Article  CAS  Google Scholar 

  14. K. Yamamoto, Y. Sunagawa, H. Takahashi, and A. Muramatsu, Metallic Ni Nanoparticles Confined in Hexagonally Ordered Mesoporous Silica Material. Chem. Commun. 3, 348 (2005).

    Article  CAS  Google Scholar 

  15. X.B. Huang, W.J. Dong, G. Wang, M. Yang, L. Tan, Y.H. Feng, and X.X. Zhang, Synthesis of Confined Ag Nanowires within Mesoporous Silica via Double Solvent Technique and their Catalytic Properties. J. Colloid. Interf. Sci. 359, 40 (2011).

    Article  CAS  Google Scholar 

  16. P. Dai, Y.F. Wang, M.Z. Wu, and Z.M. Xu, Optical and Magnetic Properties of γ-Fe2O3 Nanoparticles Encapsulated in SBA-15 Fabricated by Double Solvent Technique. Micro Nano Lett. 7, 219 (2012).

    Article  CAS  Google Scholar 

  17. J.V.D. Meer, I. Bardez, F. Bart, P.A. Albouy, G. Wallez, and A. Davidson, Dispersion of Co3O4 Nanoparticles within SBA-15 Using Alkane Solvents. Microporous Mesoporous Mater. 118, 183 (2009).

    Article  CAS  Google Scholar 

  18. K.J. Kim, E.S. Lee, and Y.U. Kwon, Syntheses of Micrometer-Long Pt and Ag Nanowires through SBA-15 Templating. J. Nanopart. Res. 14, 1270 (2012).

    Article  CAS  Google Scholar 

  19. X.H. Deng, K. Chen, and H. Tüysüz, Protocol for the Nanocasting Method: Preparation of Ordered Mesoporous Metal Oxides. Chem. Mater. 29, 40 (2017).

    Article  CAS  Google Scholar 

  20. Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, and S. Dai, Carbon Materials for Chemical Capacitive Energy Storage. Adv. Mater. 23, 4828 (2011).

    Article  CAS  Google Scholar 

  21. Y.L. Cao, J.M. Cao, M.B. Zheng, J.S. Liu, and G.B. Ji, Synthesis, Characterization, and Electrochemical Properties of Ordered Mesoporous Carbons Containing Nickel Oxide Nanoparticles Using Sucrose and Nickel Acetate in a Silica Template. J. Solid State Chem. 180, 792 (2007).

    Article  CAS  Google Scholar 

  22. S.H. Liu, S.C. Chen, and W.H. Sie, Heat-Treated Platinum Nanoparticles Embedded in Nitrogen-Doped Ordered Mesoporous Carbons: Synthesis, Characterization and their Electrocatalytic Properties toward Methanol-Tolerant Oxygen Reduction. Int. J. Hydrogen Energy. 36, 15060 (2011).

    Article  CAS  Google Scholar 

  23. C. Su, C. Zhang, G.Q. Lu, and C.N. Ma, Nonenzymatic Electrochemical Glucose Sensor Based on Pt Nanoparticles/Mesoporous Carbon Matrix. Electroanalysis 22, 1901 (2010).

    Article  CAS  Google Scholar 

  24. L.Q. Luo, F. Li, L.M. Zhu, Y.P. Ding, Z. Zhang, D.M. Deng, and B. Lu, Nonenzymatic Glucose Sensor Based on Nickel(II)Oxide/Ordered Mesoporous Carbon Modified Glassy Carbon Electrode. Colloids Surf. B 102, 307 (2013).

    Article  CAS  Google Scholar 

  25. D. Xiang, L.W. Yin, J.Y. Ma, E.Y. Guo, Q. Li, Z.Q. Li, and K.G. Liu, Amperometric Hydrogen Peroxide and Glucose Biosensor Based on NiFe2/Ordered Mesoporous Carbon Nanocomposites. Analyst 140, 644 (2015).

    Article  CAS  Google Scholar 

  26. Dhanjai, P. Balla, A. Sinha, L.X. Wu, X.B. Lu, D.Q. Tan, and J.P. Chen, Co3O4 Nanoparticles Supported Mesoporous Carbon Framework Interface for Glucose Biosensing. Talanta 203, 112 (2019).

    Article  CAS  Google Scholar 

  27. L.X. Wang, J. Bai, X.J. Bo, X.L. Zhang, and L.P. Guo, A Novel Glucose Sensor Based on Ordered Mesoporous Carbon–Au Nanoparticles Nanocomposites. Talanta 83, 1386 (2011).

    Article  CAS  Google Scholar 

  28. B. Haghighi, B. Karimi, M. Tavahodi, and H. Behzadneia, Fabrication of a Nonenzymatic Glucose Sensor Using Pd-Nanoparticles Decorated Ionic Liquid Derived Fibrillated Mesoporous Carbon. Mater. Sci. Eng. C 52, 219 (2015).

    Article  CAS  Google Scholar 

  29. H.X. Jia, N.Z. Shang, Y. Feng, H.M. Ye, J.N. Zhao, H. Wang, C. Wang, and Y.F. Zhang, Facile Preparation of Ni Nanoparticle Embedded on Mesoporous Carbon Nanorods for Non-Enzymatic Glucose Detection. J. Colloid. Interf. Sci. 583, 310 (2021).

    Article  CAS  Google Scholar 

  30. J.W. Xu, N. Xu, X.M. Zhang, P. Xu, B. Gao, X. Peng, S. Mooni, Y. Li, J.J. Fu, and K.F. Huo, Phase Separation Induced Rhizobia-Like Ni Nanoparticles and TiO2 Nanowires Composite Arrays for Enzyme-Free Glucose Sensor. Sens. Actuators B Chem. 244, 38 (2017).

    Article  CAS  Google Scholar 

  31. P. Zhang, Y.K. Li, Y.S. Zhang, R.H. Hou, X.L. Zhang, C. Xue, S.B. Wang, B.C. Zhu, N. Li, and G.S. Shao, Photogenerated Electron Transfer Process in Heterojunctions. In Situ Irradiation XPS. Small Methods 4, 2000214 (2020).

    Article  CAS  Google Scholar 

  32. W.Y. Wang, Artificial photosynthetic Starch from Liquid Sunshine. Chinese J. Catal. 43, 895 (2022).

    Article  Google Scholar 

  33. A. Prabhakaran and P. Nayak, Surface Engineering of Laser-Scribed Graphene Sensor Enables Non-Enzymatic Glucose Detection in Human Body Fluids. ACS Appl. Nano Mater. 3, 391 (2020).

    Article  CAS  Google Scholar 

  34. K.M. El-Khatib and R.M. Abdel Hameed, Development of Cu2O/Carbon Vulcan XC-72 as a Non-Enzymatic Sensor for Glucose Determination. Biosens. Bioelectron. 26, 3542 (2011).

    Article  CAS  Google Scholar 

  35. J. Zhang, N.N. Ding, J.Y. Cao, W.C. Wang, and Z.D. Chen, In Situ Attachment of Cupric Oxide Nanoparticles to Mesoporous Carbons for Sensitive Amperometric Non-Enzymatic Sensing of Glucose. Sens. Actuators B Chem. 178, 125 (2013).

    Article  CAS  Google Scholar 

  36. J. Luo, S.S. Jiang, H.Y. Zhang, J.Q. Jiang, and X.Y. Liu, A Novel Non-Enzymatic Glucose Sensor Based on Cu Nanoparticle Modified Graphene Sheets Electrode. Anal. Chim. Acta. 709, 47 (2012).

    Article  CAS  Google Scholar 

  37. H.M. Wu, S.H. Zhou, Y. Wu, and W.B. Song, Ultrafine CuO Nanoparticles were Isolated by Ordered Mesoporous Carbon for Catalysis and Electroanalysis. J. Mater. Chem. A 1, 14198 (2013).

    Article  CAS  Google Scholar 

  38. C.Z. Yu, J. Fan, B.Z. Tian, and D.Y. Zhao, Morphology Development of Mesoporous Materials: a Colloidal Phase Separation Mechanism. Chem. Mater. 16, 889 (2004).

    Article  CAS  Google Scholar 

  39. A.H. Lu, W.C. Li, W. Schmidt, W. Kiefer, and F. Schüth, Easy Synthesis of an Ordered Mesoporous Carbon with a Hexagonally Packed Tubular Structure. Carbon 42, 2939 (2004).

    Article  CAS  Google Scholar 

  40. L. Qie, W. Chen, X. Xiong, C. Hu, F. Zou, P. Hu, and Y. Huang, Sulfur-Doped Carbon with Enlarged Interlayer Distance as a High-Performance Anode Material for Sodium-Ion Batteries. Adv. Sci. 2, 1500195 (2015).

    Article  CAS  Google Scholar 

  41. X.J. Bo, J.C. Ndamanisha, J. Bai, and L.P. Guo, Nonenzymatic Amperometric Sensor of Hydrogen Peroxide and Glucose Based on Pt Nanoparticles/Ordered Mesoporous Carbon Nanocomposite. Talanta 82, 85 (2010).

    Article  CAS  Google Scholar 

  42. J.W. Qi, G.P. Wei, X.Y. Sun, L.J. Wang, and J.S. Li, Enhanced Removal for H2S by Cu-Ordered Mesoporous Carbon Foam. J. Hazard. Mater. 396, 122710 (2020).

    Article  CAS  Google Scholar 

  43. X.H. Wang, Chemical and Morphological Characterization of Mesoporous Material Supported Copper Oxide Nanoparticles for a Potential Application. J. Porous Mater. 18, 623 (2011).

    Article  CAS  Google Scholar 

  44. Q.S. Lu, Z.Y. Wang, J.G. Li, P.Y. Wang, and X.L. Ye, Structure and Photoluminescent Properties of ZnO Encapsulated in Mesoporous Silica SBA-15 Fabricated by Two-Solvent Strategy. Nanoscale Res. Lett. 4, 646 (2009).

    Article  CAS  Google Scholar 

  45. H. Huwe and M. Fröba, Synthesis and Characterization of Transition Metal and Metal Oxide Nanoparticles Inside Mesoporous. Carbon CMK-3. Carbon 45, 304 (2007).

    Article  CAS  Google Scholar 

  46. J. Chen, Z.C. Feng, P.L. Ying, and C. Li, ZnO Clusters Encapsulated Inside Micropores of Zeolites Studied by UV Raman and Laser-Induced Luminescence Spectroscopies. J. Phys. Chem. B 108, 12669 (2004).

    Article  CAS  Google Scholar 

  47. X.J. Bo, J. Bai, L. Yang, and L.P. Guo, The Nanocomposite of PtPd Nanoparticles/Onionlike Mesoporous Carbon Vesicle for Nonenzymatic Amperometric Sensing of Glucose. Sens. Actuators B Chem. 157, 662 (2011).

    Article  CAS  Google Scholar 

  48. X. Wang, C. Hu, H. Liu, G. Du, X. He, and Y. Xi, Synthesis of CuO Nanostructures and their Application for Nonenzymatic Glucose Sensing. Sens. Actuators B Chem. 144, 220 (2010).

    Article  CAS  Google Scholar 

  49. X.H. Kang, Z.B. Mai, X.Y. Zou, P.X. Cai, and J.Y. Mo, A Sensitive Nonenzymatic Glucose Sensor in Alkaline Media with a Copper Nanocluster/Multiwall Carbon Nanotube-Modified Glassy Carbon Electrode. Anal. Biochem. 363, 143 (2007).

    Article  CAS  Google Scholar 

  50. J. Bai, X.J. Bo, C. Luhana, and L.P. Guo, A Novel Material Based on Cupric(Ii) Oxide/Macroporous Carbon and its Enhanced Electrochemical Property. Electrochim. Acta 56, 7377 (2011).

    Article  CAS  Google Scholar 

  51. J.P. Wang, D.F. Thomas, and A.C. Chen, Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks. Anal. Chem. 80, 997 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 21075048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Ge, Y., Wen, G. et al. Synthesis of Copper Nanoparticles in the Ordered Mesoporous Carbon (Cu@OMC) for Glucose Detection. J. Electron. Mater. 51, 5005–5014 (2022). https://doi.org/10.1007/s11664-022-09749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09749-7

Keywords

Navigation