Skip to main content
Log in

Influence of GO Concentration in Development of PVDF-HFP/TiO2/Graphene Oxide Nanocomposite Films for Electroadhesive Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ball milling was used to prepare nanocrystalline TiO2, GO and PVDF-HFP/TiO2/GO nanocomposite, and the effects of milling hours on phase transformation and crystal size wasinvestigated. The films were made using the doctor blade method. XRD, SEM, FTIR spectra were used to characterize the prepared samples. The dielectric constant values were calculated for different milling hour. A lightweight, low-power film is described here for controlling the engagement in a mobile cleaning device. Electrostatic adhesion between thin electrode sheets covered with a dielectric substance underpins the film. The load bearing is influenced by the GO to TiO2 wt.%. A portable device has been fabricated based on the concept of electroadhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data will be available from the authors upon request.

References

  1. A. Rastogi and R. Manohar, Effect of graphene oxide dispersion in nematic mesogen and their characterization results. Appl. Phys. A 125, 192 (2019).

    Article  Google Scholar 

  2. K. Deshmukh and M. Joshi, Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites. Polym. Test 34, 211–219 (2014).

    Article  CAS  Google Scholar 

  3. K. Deshmukh, M. Ahamed, R. Deshmukh, S.K. Pasha, K. Sadasivuni, D. Ponnamma, and K. Chidambaram, Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application. Eur. Polym. J 76, 14–27 (2016).

    Article  CAS  Google Scholar 

  4. A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri, and I. Dekany, Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003).

    Article  CAS  Google Scholar 

  5. K. Deshmukh, M. Ahamed, S.K. Pasha, R. Deshmukh, and R. Bhagat, Highly dispersible graphene oxide reinforced polypyrrole/polyvinyl alcohol blend nanocomposites with high dielectric constant and low dielectric loss. RSC Adv. 5, 61933–61945 (2015).

    Article  CAS  Google Scholar 

  6. K. Deshmukh, M.B. Ahamed, R. Deshmukh, S.K. Pasha, K. Chidambaram, K. Sadasivuni, D. Ponnamma, and M.A. AlMaadeed, Eco-friendly synthesis of graphene oxide reinforced hydroxypropyl methylcellulose/polyvinyl alcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. PolymPlast Technol. Eng. 55, 1240–1253 (2016).

    Article  CAS  Google Scholar 

  7. S. Andersson, B. Collen, U. Kuylenstierna, and A. Magneli, Phase analysis studies on the titanium oxygen system. Acta Chem. Scand. 11, 1641 (1957).

    Article  CAS  Google Scholar 

  8. J.S. Anderson and B.G. Hyde, On the possible role of dislocations in generating ordered and disordered shear structures. J. Phys. Chem. Solids 28, 1393 (1967).

    Article  CAS  Google Scholar 

  9. E. Wierzbicka, M. Domaschke, N. Denisov, D. Fehn, I. Hwang, M. Kaufmann, B. Kunstmann, J. Schmidt, K. Meyer, W. Peukert, and P. Schmuki, Magnéli phases doped with Pt for photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2, 8399–8404 (2019).

    Article  CAS  Google Scholar 

  10. R. Liu, L. Pan, X. Liu, and D. Wu, An evaporation-induced tri-constituent assembly approach to fabricate an ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. RSC Adv. 5, 16765–16768 (2015).

    Article  CAS  Google Scholar 

  11. Y. Liang, H. Wang, H. Casalongue, Z. Chen, and H. Dai, TiO2 nanocrystals grown on graphene as advancedphotocatalytic hybrid materials. Nano Res. 3, 701–705 (2010).

    Article  CAS  Google Scholar 

  12. G. Peng, X. Zhao, Z. Zhan, S. Ci, Q. Wang, Y. Liang, and M. Zhao, New crystal structure and discharge efficiency ofpoly(vinylidene fluoride-hexafluoropropylene)/poly(methyl methacrylate) blend films. RSC Adv. 4, 16849 (2014).

    Article  CAS  Google Scholar 

  13. S. Conze, I. Veremchuk, M. Reibold, B. Matthey, A. Michaelis, I. Yu Grin, and Kinski, “Magnéli phases Ti4O7 and Ti8O15 and their carbon nanocomposites via the thermal decomposition-precursor route. J. Solid State Chem. 229, 235–242 (2015).

    Article  CAS  Google Scholar 

  14. S. Harada, K. Tanaka, and H. Inui, Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnèliphases. J. Appl. Phys. 108, 083703 (2010).

    Article  Google Scholar 

  15. A. Rastogi, and R. Manohar, Effect of graphene oxide dispersion in nematic mesogen and theircharacterization results. Appl. Phys. A. 125, 192 (2019).

    Article  Google Scholar 

  16. A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, and P. Wojciechowski, Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods. J. Nanomater. 124814, 9 (2014).

    Google Scholar 

  17. W. Tong, Y. Zhang, L. Yu, F. Lv, L. Liu, Q. Zhang, and Q. An, Amorphous TiO2-coated reduced graphene oxide hybridnanostructures for polymer composites with low dielectric loss. Chem. Phys. Lett. 638, 43–46 (2015).

    Article  CAS  Google Scholar 

  18. K. Deshmukh, M. Ahamed, R. Deshmukh, S.K. Pasha, K. Sadasivuni, D. Ponnamma, and M. AlMaadeed, Striking multiple synergies in novel three-phase fluoropolymernanocomposites by combining titanium dioxide and grapheneoxide as hybrid fillers. J. Mater. Sci. Mater. Electron. 28, 559–575 (2017).

    Article  CAS  Google Scholar 

  19. J. Wang, Z. Shi, X. Wang, X. Mai, R. Fan, H. Liu, X. Wang, and Z. Guo, Enhancing dielectric performance of poly(vinylidene fluoride) nanocomposites viacontrolled distribution of carbon nanotubes and barium titanate nanoparticles. Eng. Sci. 4, 79–86 (2018).

    Google Scholar 

  20. M. Selvaraj, R. Senthilkumar, R. Balaji, S. Selvasekarapandian, and G. Manivasagam , Influence of graphene oxide and reduced graphene oxide on dielectric properties of PZT/PVDF composite films, in AIP Conf. Proc. 2162, 020056-1–020056-7 (2019)

  21. Y.C. Li, S.C. Tjong, and R.K.Y. Li, Electrical conductivity and dielectric response of poly(vinylidene fluoride)–graphite nanoplatelet composites. Synth. Met. 160, 17–18, 1912–19191919 (2010).

    Article  Google Scholar 

  22. L.J. Ramasanta, M. Hernandez, M.A. Lopez-Manchaob, and R. Verdejo, Functionalised graphene sheets as effective high dielectric constant fillers. Nanoscale. Res. Lett. 6, 508–513 (2011).

    Article  Google Scholar 

  23. N. Ibrayev, A. Zhumabekov, S. Ghyngazov, and E. Lysenko, Synthesis and study of the properties of nanocomposite materials TiO2-GO and TiO2-rGO. Mater. Res. Express 6, 125036 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vidhya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepak Rosario, J., Ranjithkumar, R., Vidhya, B. et al. Influence of GO Concentration in Development of PVDF-HFP/TiO2/Graphene Oxide Nanocomposite Films for Electroadhesive Applications. J. Electron. Mater. 52, 2062–2070 (2023). https://doi.org/10.1007/s11664-022-10138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-10138-3

Keywords

Navigation