Skip to main content
Log in

Synthesis and characterization of TiO2/graphene oxide nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiO2–graphene oxide (TiO2/GO)-nanocomposite was synthesized by the thermal hydrolysis method. The solution processibility of graphene oxide offers a practical route to carbon-based composites, samples were portrayed by X-ray diffraction, UV–visible absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, and fourier transformed infrared spectroscopy. Phase formation of the TiO2/GO composite was inspected with powder X-ray diffraction (XRD), the typical surface morphology was done by using scanning electron microscopy (SEM) and the high-resolution transmission electron microscopy (HR-TEM). The different functional groups were perceived by using FT-IR and raman spectroscopy. The optical properties were contemplated using optical ingestion and photoluminescence (PL) spectra. The conductivity and dielectric properties were examined in the different frequencies and the different temperatures. The outcomes demonstrated that the dielectric consistent and the dielectric loss were frequency and temperature dependent. The AC conductivity at various temperatures demonstrated thermal conduction. Furthermore, the electrical conductivity of TiO2/GO composite was investigated utilizing current density (J)- volteage (V) measurements. In this presentation, we clarify the underlying mechanisms of TiO2/GO-nanocomposite alignment and itself has significant potentiality as an optical and electrical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. W. Wang, P. Serp, P. Kalck, J.L. Faria, J. Mol. Catal. A 235, 194–199 (2005)

    Article  Google Scholar 

  2. W. Wang, P. Serp, P. Kalck, J.L. Faria, Appl. Catal. B 56, 305–312 (2005)

    Article  Google Scholar 

  3. L.M. Pastrana-Martínez, S. Morales-Torres, S.K. Papageorgiou, Appl. Catal. B 142143, 101–111 (2013)

    Article  Google Scholar 

  4. L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, Appl. Catal. B 123124, 241–256 (2012)

    Article  Google Scholar 

  5. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)

    Article  Google Scholar 

  6. L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, Appl. Catal. B 158159, 329–340 (2014)

    Article  Google Scholar 

  7. L. Hu, S. Dong, Q. Li, J. Alloys Compd. 633, 256–264 (2015)

    Article  Google Scholar 

  8. H. Xie, X. Ye, K. Duan, J. Alloys Compd. 636, 40–47 (2015)

    Article  Google Scholar 

  9. L.M. Pastrana-Martínez, S. Morales-Torres, S. Carabineiro, ChemPlusChem 78, 801–807 (2013)

    Article  Google Scholar 

  10. C. Liu, Y. Teng, R. Liu, Carbon 49, 5312–5320 (2011)

    Article  Google Scholar 

  11. P. Solís-Fernández, R. Rozada, J.I. Paredes, J. Alloys Compd. 536, S532–S537 (2012)

    Article  Google Scholar 

  12. W. Jo, H. Kang, Powder Technol. 250, 115–121 (2013)

    Article  Google Scholar 

  13. K. Krishnamoorthy, R. Mohan, S.J. Kim, Appl. Phys. Lett. 24, 98 (2011)

    Google Scholar 

  14. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, J. Phys. Chem. C 113(46), 19812–19823 (2009)

    Article  Google Scholar 

  15. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, ACS Nano 4, 6425–6432 (2010)

    Article  Google Scholar 

  16. R.K. Nainani, P. Thakur, Water Sci. Technol. 73, 1927–1936 (2016)

    Article  Google Scholar 

  17. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo. Chem. Commun. 46, 1112 (2010)

    Article  Google Scholar 

  18. M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, W. Ahmed, Appl. Surf. Sci. 274, 273 (2013)

    Article  Google Scholar 

  19. X. Li, Q. Wang, Y. Zhao, W. Wu, J. Chen, H. Meng, J. Colloid Interface Sci. 411, 69 (2013)

    Article  Google Scholar 

  20. Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y.-m. Ren, L.-P. Song, F. Wei, ACS Nano 5, 191 (2010)

    Article  Google Scholar 

  21. J. Yu, T. Ma, G. Liu, B. Cheng, Dalton Trans. 40, 6635 (2011)

    Article  Google Scholar 

  22. J. Yu, T. Ma, S. Liu, Phys. Chem. Chem. Phys. 13, 3491 (2011)

    Article  Google Scholar 

  23. S. Suresh, Appl. Nanosci. 4, 325–329 (2014)

    Article  Google Scholar 

  24. K.A. Mangai, K.T. Selvi, M. Priya, M. Rathnakumari, P. Sureshkumar, S. Sagadevan, J. Mater. Sci. doi:10.1007/s10854-016-5876-4,2016

  25. S. Sagadevan, I. Das, K. Pal, P. Murugasen, P. Singh, J. Mater. Sci. (2016). doi:10.1007/s10854-016-6180-z

    Google Scholar 

  26. K.T. Selvi, K.A. Mangai, M. Priya, M. Rathnakumari, P. Sureshkumar, S. Sagadevan, Nanomater. Nanotechnol. 6, 1–5 (2016)

    Article  Google Scholar 

  27. S. Suresh, C. Arunseshan, Appl. Nanosci. 4, 179–184 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Sagadevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagadevan, S., Pal, K., Koteeswari, P. et al. Synthesis and characterization of TiO2/graphene oxide nanocomposite. J Mater Sci: Mater Electron 28, 7892–7898 (2017). https://doi.org/10.1007/s10854-017-6488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6488-3

Keywords

Navigation