Skip to main content
Log in

Synergistic effect of impure/pure graphene oxide and TiO2 fillers on the dielectric properties of poly (vinylidene fluoride- hexafluoropropylene) for electroadhesive high load bearing applications

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Poly (vinylidene fluoride- hexafluoroproylene) PVDF-HFP has been employed as a host polymer because of its strong chemical resistance, mechanical and dielectric properties and low cost. However, further changes employing other polymers, nanomaterials, additives and fillers to improve the properties of the host polymers are of significant interest. TiO2 has gained a lot of attention because of its high k dielectric and photo catalytic capabilities. Graphene oxide (GO) has received a lot of attention because of its larger mechanical strength, dielectric behavior and other qualities. Using the doctor blade coating process, varied amounts of TiO2 and GO were successfully integrated into PVDF-HFP to form composite films. The XRD result reveals that TiO2/GO has been successfully incorporated into the PVDF-HFP polymer matrix, while FTIR, SEM experiments have demonstrated the effectiveness of TiO2/GO fillers on PVDF-HFP film. AC impedance spectroscopy reveals the dielectric behavior and resistivity of polymer nanocomposite film. The film has been tested for its loading bearing capacity during electroadhesion with different applied voltages. The maximum load bearing capacity based on electroadhesion has been estimated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data will be available from the authors upon request.

References

  1. R. Chen, Y. Huang, Q. Tang, L. Bai, J. Adhes. Sci. Technol. 30, 2301–2315 (2016)

    Article  CAS  Google Scholar 

  2. T. Bamber, J. Guo, J. Singh, M. Bigharaz, J. Petzing, A. Bingham, L. Justham, J. Penders, M. Jackson, J. Phys. D: Appl. Phys 50, 205304 (2017)

    Article  Google Scholar 

  3. A. Simaite, M.A. Karimi, M. Spenko, J. Micromech. Microeng. 29, 077001 (2019)

    Article  CAS  Google Scholar 

  4. R. Chen, Z. Zhang, R. Song, C. Fang, D. Sindersberger, J. Monkman, J. Guo, Smart Mater. Struct. 29, 055009 (2020)

    Article  CAS  Google Scholar 

  5. C. Sevik, C. Bulutay, Phys. Rev. B 74, 193201 (2006)

    Article  Google Scholar 

  6. S. Malik, M.J. Hameed, M.M. Siddiqui, Haque, M. Muneer, Int. J. Photoenergy 2013, 768348 (2013)

  7. M. Kumar, N. Kashyap, S. Sabharwal, A. Kumar, P. Kumar, Kumar, K. Asokan, Mater. Res. Express 4, 115035 (2017)

    Article  Google Scholar 

  8. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev et al., ACS Nano 4, 4806–4814 (2010)

    Article  CAS  Google Scholar 

  9. M. Long, Y. Qin, C. Chen, X. Guo, B. Tan, W. Cai, J. Phys. Chem. C 117, 16734–16741 (2013)

    Article  CAS  Google Scholar 

  10. C.H.A. Tsang, H. Huang, J. Xuan, H. Wang, D.Y.C. Leung, Renew. Sustain. Energy Rev. 120, 109656 (2020)

    Article  CAS  Google Scholar 

  11. M. Yadav, J. Kim, J. Alloys Compd. Part B 688, 123–129 (2016)

    Article  CAS  Google Scholar 

  12. G. Jetani, M. Rahmania, Eur. Phys. J. Plus 135, 720 (2020)

    Article  Google Scholar 

  13. V. Štengl, S. Bakardjieva, T. Grygar, J. Bludská, M. Kormunda, Chem. Cent. J 7, 41 (2013)

    Article  Google Scholar 

  14. X. Huang, P. Jiang, Adv. Mater. 27(3), 544–546 (2015)

    Article  Google Scholar 

  15. D. He, Y. Wang, X. Chen, Y. Deng, A. Compos Part, Appl. Sci. Manuf. 93, 137–143 (2016)

    Article  Google Scholar 

  16. C. Shiqi Yu, Y. Ding, Y. Liu, D. Zhang, S. Zhang, Chen, J. Power Sources 535, 231415 (2022)

    Article  Google Scholar 

  17. S.K. Karan, R. AKDas, S. Bera, A. Paria, N.K. Maitra, Shrivastava, et al, RSC Adv. 6(44), 37773–37783 (2016)

    Article  CAS  Google Scholar 

  18. H. Wang, H. Xie, S. Wang, Z. Gao, C. Li, G. Hu, C. Xiong, Compos. A: Appl. Sci. Manuf. 108, 62–68 (2018)

    Article  CAS  Google Scholar 

  19. D. Ponnamma, M. Al-Maadeed, Sustain. Energy Fuels 3, 774–785 (2019)

    Article  CAS  Google Scholar 

  20. G. Rana, C. Johri, K. Asokan, Europhys. Lett. 103, 17008 (2013)

    Article  Google Scholar 

  21. S. Khalate, R. Kate, H. Pathan, R. Deokate, J. Solid State Electrochem. 21, 2737–2746 (2017)

    Article  CAS  Google Scholar 

  22. Q. Panga, Y. Zhao, X. Biana, Y. Ju, X. Wang, Y. Wei, B. Liu, F. Du, C. Wang, G. Chena, J. Mater. Chem. A 5, 3667–3674 (2017)

    Article  Google Scholar 

  23. K. Bhattacharyya, S. Varma, A.K. Tripathi, S.R. Bharadwaj, A.K. Tyagi, J. Phys. Chem. C 112, 19102–19112 (2008)

    Article  CAS  Google Scholar 

  24. E. Vasilaki, I. Georgaki, D. Vernardou, M. Vamvakaki, N. Katsarakis, Appl. Surf. Sci 353, 865–872 (2015)

    Article  CAS  Google Scholar 

  25. S. Nabil, S. Hammad, M. El-Bery, A. Shalaby, H. El-Shazly, Environ. Sci. Pollut. Res 28, 36157–36173 (2021)

    Article  CAS  Google Scholar 

  26. S. Ishaq, F. Kanwal, S. Atiq, M. Moussa, U. Azhar, D. Losic, Mater. 13, 205 (2020)

    Article  CAS  Google Scholar 

  27. M. Selvaraj, R. Senthilkumar, R. Balaji, S. Selvasekarapandian, G. Manivasagam, AIP Conf. Proc. 2162, 020056-1-020056-7 (2019)

  28. J. Wang, Z. Shi, X. Wang, X. Mai, R. Fan, H. Liu, X. Wang, Z. Guo, Eng. Sci. 4, 79–86, 79 (2018)

  29. O.D. Jayakumar, H. Abdelhamid, V. Kotari, P. Mandal, R. Rao, M. Jagannath, R. Naik, Naik, A.K. Tyagi, Dalton Trans. 44, 15872 (2015)

    Article  CAS  Google Scholar 

  30. X. Cuilian Ding, S. Tang, S. Yu, Z. Chen, H. Liu, D. Luo, Zhang, J. Mater. Chem. C 10, 6323–6333 (2022)

    Article  Google Scholar 

  31. M. Ladhar, H. Arous, M. Kaddami, M. Raihane, M. Lahcini, A. Kallel, M.P.F., Graça, L.C. Costa, J. Non-Cryst Solids 378, 39–44 (2013)

  32. Q. Panga, Y. Zhao, X. Biana, Y. Ju, X. Wang, Y. Wei, B. Liu, F. Du, C. Wang, G. Chena, J. Mater. Chem. A 5, 3667–3674 (2017)

    Article  Google Scholar 

  33. U. Ahmad, N. Farooqui, Hamid, Electrochim. Acta 283, 842–849 (2018)

    Article  CAS  Google Scholar 

  34. K. Deshmukh, M. Ahamed, R. Deshmukh, S.K. Pasha, K. Sadasivuni, D. Ponnamma, M. AlMaadeed, J. Mater. Sci.: Mater. Electron 28, 559–575 (2017)

    CAS  Google Scholar 

  35. A. Malas, Prog. Rubber Nanocomposites. 179–229 (2017)

  36. S.A. Abdullah, M.Z. Sahdan, N. Nafarizal, H. Saim, A.S. Bakri, C.H. Cik Rohaida, F. Adriyanto, Y. Sari, J. Phys.: Conf. Ser. 995, 012067 (2018)

  37. B. Tang, H. Chen, H. Peng, Z. Wang, W. Huang, Nanomaterials 8(2), 105 (2018)

  38. Kaishu, Guan, Surf. Coat. Technol. 19, 155–160 (2005)

    Google Scholar 

  39. P.F. Schwarz, N.J. Turro, S.H. Bossmann, A.M. Braun, A.-M.A. Abdel Wahab, H. Du¨rr, J. Phys. Chem. B 101, 7127–7134 (1997)

    Article  CAS  Google Scholar 

  40. V. Shpovalov, E.V. Stefanovich, T.N. Truog, Surf. Sci. Lett. 498, 103–108 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Centre for Research in Material Science and Thermal Management (CRM & TM) lab, Karunya Institute of technology and sciences for providing contact angle analysis. The graphical abstract work was supported by Ms. Vinodhini Subramaniyam, Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore.

Author information

Authors and Affiliations

Authors

Contributions

Deepak J contributed to Analysis, Interpretation and drafting, Ranjith R performed the Analysis and Interpretation of data, Deepthi V worked on the photocatalysis part, Vidhya B contributed in Conception or design of the work, final drafting and revision for important intellectual content, Rajesh S, Sakunthala A and Nandhakumar R involved in all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to B. Vidhya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosario, J.D., Ranjithkumar, R., Deepthi, V. et al. Synergistic effect of impure/pure graphene oxide and TiO2 fillers on the dielectric properties of poly (vinylidene fluoride- hexafluoropropylene) for electroadhesive high load bearing applications. J Electroceram 50, 23–36 (2023). https://doi.org/10.1007/s10832-022-00301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-022-00301-x

Keywords

Navigation