Skip to main content

Advertisement

Log in

Cubic Mixed Semiconductor BAs:N Compounds for Energy Harvesting and Photovoltaic Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recently, mixed crystal semiconductors containing BAs:N have garnered significant attention for the next generation of photovoltaic applications owing to their optoelectronic and elastic properties with moderate energy band gap (Eg). According to Vegard’s law, lattice constants undergo slight variations under various condensation conditions. When Born–Huang (BH) stability criteria were applied to determine elastic parameters, the calculated Eg value of BAs1−xNx decreased concerning the increase in As condensation. It was found that these elastic constant values easily fulfilled the BH stability criteria, mechanically stabilizing BAs1−xNx. Moreover, the elastic moduli, Poisson's ratio and other properties were calculated. Our results suggest that BAs1−xNx compounds are ideal candidates for utilization in the above devices. Additionally, the calculated optical properties of this alloy indicated that BAs1−xNx is suitable for practical photo-sensing and photovoltaic applications due to its vast spectral region ranging from ultra-violet to visible, higher absorption peaks, and overall Eg values. The study provides a route for experimental work on photovoltaic applications based on cubic semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (Hoboken: Wiley, 2009).

    Book  Google Scholar 

  2. M. Causa, R. Dovesi, and C. Roetti, Pseudopotential Hartree-Fock Study of Seventeen III-V and IV-IV Semiconductors. Phys. Rev. B 43, 14 (1991).

    Article  Google Scholar 

  3. C. Stampfl and C. Van de Walle, Density-Functional Calculations for III-V Nitrides using the Local-Density Approximation and the Generalized Gradient Approximation. Phys. Rev. B 59, 8 (1999).

    Article  Google Scholar 

  4. S. Saib and N. Bouarissa, The Effect of Pressure on Band Parameters and Optical Characteristics in Indium Nitride. J. Electron. Mater. 51, 3758 (2022).

    Article  CAS  Google Scholar 

  5. F. Ponce and D. Bour, Nitride-Based Semiconductors for Blue and Green Light-Emitting Devices. Nature 386, 6623 (1997).

    Article  Google Scholar 

  6. S. Nakamura, The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes. Science 281, 5379 (1998).

    Article  Google Scholar 

  7. S.V. Syrotyuk and M.K. Hussain, The Effect of Cr Impurity and Zn Vacancy on Electronic and Magnetic Properties of ZnSe Crystal. Phys. Chem. Solid State 22, 529 (2021).

    Article  CAS  Google Scholar 

  8. N. Korozlu, K. Colakoglu, E. Deligoz, and Y.O. Ciftci, The Structural, Electronic and Optical Properties of CdxZn1−xSe Ternary Alloys. Opt. Commun. 284, 1863 (2011).

    Article  CAS  Google Scholar 

  9. N. Bouarissa, Optoelectronic Properties of InAs1−xPx Semiconducting Alloys. Mater. Sci. Eng. B 86, 53 (2001).

    Article  Google Scholar 

  10. H. Meyers and H. Myers, Introductory Solid State Physics (Boca Raton: CRC Press, 1997).

    Book  Google Scholar 

  11. R. Xingxiang, Z. Fuchun, and Z. Weihu, First-Principles Investigation on Electronic Structure and Optical Properties of Wurtzite InxGa1-xN Alloys. Rare Met. Mater. Eng. 44, 12 (2015).

    Article  Google Scholar 

  12. A. Said, M. Debbichi, and M. Said, Theoretical Study of Electronic and Optical Properties of BN, GaN and BxGa1−xN in Zinc Blende and Wurtzite Structures. Optik 127, 9212 (2016).

    Article  CAS  Google Scholar 

  13. M. Ustundag, M. Aslan, and B.G. Yalcin, The First-Principles Study on Physical Properties and Phase Stability of Boron-V (BN, BP, BAs, BSb and BBi) Compounds. Comput. Mater. Sci. 81, 471 (2014).

    Article  CAS  Google Scholar 

  14. G. Cappellini and G. Satta, Optical Properties of BN in Cubic and Layered Hexagonal Phases. Phys. Rev. B 64, 035104 (2001).

    Article  Google Scholar 

  15. B. Song, K. Chen, K. Bushick, K.A. Mengle, F. Tian, G. Gamage, Z. Ren, E. Kioupakis, and G. Chen, Optical Properties of Cubic Boron Arsenide. Appl. Phys. Lett. 116, 141903 (2020).

    Article  CAS  Google Scholar 

  16. J.S. Kang, M. Li, H. Wu, H. Nguyen, and Y. Hua, Basic Physical Properties of Cubic Boron Arsenide. Appl. Phys. Lett. 115, 122103 (2019).

    Article  Google Scholar 

  17. R. Dovesi, C. Pisani, C. Roetti, and P. Dellarole, Xact-Exchange Hartree-Fock Calculations for Periodic Systems: IV: Ground-State Properties of Cubic Boron Nitride. Phys. Rev. B 24, 4170 (1981).

    Article  CAS  Google Scholar 

  18. M.P. Surh, S.G. Louie, and M.L. Cohen, Quasi Particle Energies for Cubic BN, BP, and BAs. Phys. Rev. B 43, 9126 (1991).

    Article  CAS  Google Scholar 

  19. Y. Ge, W. Wan, X. Guo, and Y. Liu, Direct and Indirect Optical Absorptions of Cubic BAs and BSb. Opt. Express 28, 238 (2020).

    Article  CAS  Google Scholar 

  20. K. Shimada, T. Sota, and K. Suzuki, First-Principles Study on Electronic and Elastic Properties of BN, AlN, and GaN. J. Appl. Phys. 84, 9 (1998).

    Article  Google Scholar 

  21. D.A. Evans, A.G. Mcglynn, B.M. Towlson, M. Gunn, D. Jones, T.E. Jenkins, R. Winter, and N.R.J. Poolton, Determination of the Optical Band-Gap Energy of Cubic and Hexagonal Boron Nitride using Luminescence Excitation Spectroscopy. J. Phys. Condens. Matter 20, 075233 (2008).

    Article  Google Scholar 

  22. C.B. Samantaray and R.N. Singh, Review of Synthesis and Properties of Cubic Boron Nitride (c-BN) Thin Films. Int. Mater. Rev. 50, 6 (2005).

    Article  Google Scholar 

  23. J. Buckeridge and D.O. Scanlon, The Electronic band Structure and Optical Properties of Boron Arsenide. Phys. Rev. Mater. 3, 05160 (2019).

    Google Scholar 

  24. M.K. Hussain, Investigations of the Stability, Electronic and Magnetic Structures in the Zr2Ni-Based Heusler Compounds: First Principles Study. Mater. Sci. Eng. B 264, 114922 (2021).

    Article  CAS  Google Scholar 

  25. M.K. Hussain, M.J. Alwazzan, and R. Paudel, (111), (001), and (110) surface Effects on the Stability and Electronic-Magnetic Properties of Mn3P Alloy. Phys. E 131, 114717 (2021).

    Article  CAS  Google Scholar 

  26. K.H. Moaid, G.Y. Gao, and K.L. Yao, Investigations of the Electronic and Magnetic Structures at Heusler Alloy Surface: Co2TiGe (0 0 1). J. Electron. Spectrosc. Relat. Phenom. 203, 45 (2015).

    Article  Google Scholar 

  27. M.K. Hussain, F.H. Abdulsadah, and M.M. Ali, Half-Metallic Properties of the New Zr2RhB Inverse Heusler Alloy with CuHg2Ti–Type Structure. Mater. Today Proc. 18, 2590 (2019).

    Article  CAS  Google Scholar 

  28. M.K. Hussain, Investigations of the Electronic and Magnetic Properties of Newly (001) Surface LiCrS and LiCrSe half-Heusler Compounds. Appl. Phys. A 124, 343 (2018).

    Article  Google Scholar 

  29. M. Hussain, G. Gao, and K. Yao, Half-Metallic Properties of the New Ti2YPb(Y = Co, Fe) Heusler Alloys. Int. J. Mod. Phys. B 29, 1550175 (2015).

    Article  CAS  Google Scholar 

  30. K. Moaid, Half-Metallicity of Bulk and (001) Surface in the Co2FeGa Heusler Compound: A Theoretical Study. Surf. Rev. Lett. 4, 1950130 (2019).

    Google Scholar 

  31. M. Hussain, G. Gao, and K. Yao, Half-Metallic Properties in the New Ti2NiB Heusler Alloy. J. Supercond. Nov. Magn. 28, 3285 (2015).

    Article  CAS  Google Scholar 

  32. M.K. Hussain, M.J. Alwazzan, and R. Paudel, (1 1 1), (0 0 1), and (1 1 0) Surface Effects on the Stability and Electronic-Magnetic Properties of Mn3P Alloy. Phys. E 131, 114717 (2021).

    Article  CAS  Google Scholar 

  33. S. Adachi, Model Dielectric Constants of GaP, GaAs, GaSb, InP, InAs, and InSb. Phys. Rev. B 35, 7454 (1987).

    Article  CAS  Google Scholar 

  34. S. Adachi, Optical Dispersion Relations in Amorphous Semiconductors. Phys. Rev. B 43, 12316 (1991).

    Article  CAS  Google Scholar 

  35. K.H. Moaid and N.A. Asmaa, Stability, Electronic-Magnetic, Dynamical and Optical Properties of the Mn3P ALLOY BASED on the D03-Type. Optik 226, 165948 (2021).

    Article  Google Scholar 

  36. R. Paudel, J.C. Zhu, M.K. Hussain, M. Batouche, M.W. Qureshi, and D. Paudya, Electronic, Magnetic, and Optical Properties of Bulk and (111)-Surfaces of CoMnZnSi Quaternary Heusler Alloy. J. Mag. Magn. Mat. 539, 168425 (2021).

    Article  CAS  Google Scholar 

  37. N. Mehmood and R. Ahmad, Structural, Electronic, Magnetic, and Optical Properties of Half-Heusler Alloys RuMnZ (Z = P, As): A First-Principle Study. J. Supercond. Nov. Magn. 31, 233 (2018).

    Article  CAS  Google Scholar 

  38. M.K. Hussain, O.T. Hassan, and A.M. Algubili, Investigations of the Electronic and Magnetic Structures of Zr2NiZ (Z= Ga, In, B) Heusler Compounds: First Principles Study. J. Electron. Mater. 47, 6221 (2018).

    Article  CAS  Google Scholar 

  39. M.K. Hussain and Kl. Yao, Spin Polarization Calculations and Related Properties of the Surfaces of CoVTe Alloy and Interface with a BeTe Semiconductor. Appl. Phys. Mater. Sci. Process 125, 463 (2019).

    Article  CAS  Google Scholar 

  40. M. Shakil, M.K. Masood, M. Zafar, S. Ahmad, A. Hussain, M.A. Gadhi, S.A. Buzdar, and T. Iqbal, Theoretical Study of Structural, Electronic and Optical Properties of InxGa1-xN Alloys. Optik 174, 739 (2018).

    Article  CAS  Google Scholar 

  41. N. Bouarissa, Optoelectronic Properties of InAs1−xPx Semiconducting Alloys. Mater Sci. Eng. 86, 53 (2001).

    Article  Google Scholar 

  42. I. Vurgaftman, J. Meyer, and L. Ram-Mohan, Band Parameters for III-V Compound Semiconductors and their Alloys. J. Appl. Phys. 89, 11 (2001).

    Article  Google Scholar 

  43. M.K. Hussain, Effects of Strain on the Half-Metallic and Elastic Properties of FeCrTe and CoCrSi with Clb Structure. SPIN 9, 1950018 (2019).

    Article  CAS  Google Scholar 

  44. J.S. Zhang, J.D. Bass, T. Taniguchi, A.F. Goncharov, Y. Chang, and S.D. Jacobsen, Elasticity of Cubic Boron Nitride under Ambient Conditions. J. Appl. Phy. 109, 063521 (2011).

    Article  Google Scholar 

  45. D. Jiang, Y. Ye, W. Yao, D. Zeng, J. Zhou, W. Ruan, and Y. Wen, First-principles Predictions on Half-Metallic, Mechanical, and Acoustic Properties of CuHg2Ti-Type Mn2LiZ (Z=As, Sb) Compounds. J. Supercond. Nov. Magn. 33, 1065 (2020).

    Article  CAS  Google Scholar 

  46. M. Hussain and K. Yao, Surface Properties of the Half-Metallicity in Ternary Compounds: Fe (Cr, Mn)As Based on Different Correlations. J. Magn. Magn. Mater. 478, 227 (2019).

    Article  CAS  Google Scholar 

  47. A. Nagakubo, H. Ogi, H. Sumiya, K. Kusakabe, and M. Hirao, Elastic Constants of Cubic and Wurtzite Boron Nitrides. Appl. Phys. Lett. 102, 241909 (2013).

    Article  Google Scholar 

  48. B. Asma, F. Belkharroubi, A. Ibrahim, B. Lamia, A. Mohammed, W. Belkilali, S. Azzi, and Y. Al-Douri, Structural, Mechanical, Magnetic, Electronic, and Thermal Investigations of Ag2YB (Y = Nd, Sm, Gd) full-Heusler Alloys. Emergent. Mater. 4, 1769 (2021).

    Article  CAS  Google Scholar 

  49. A. Rastogi, P. Rajpoot, and U. Verma, Properties of Group III-V Semiconductor: BAs. Bull. Mater. Sci. 42, 112 (2019).

    Article  Google Scholar 

  50. Q. Wang, L. Chen, L. Xiong, and H.R. Gong, Mechanical and Thermodynamic Properties of Cubic Boron Nitride from ab Initio Calculation. J. Phys. Chem. Solids 104, 276 (2017).

    Article  CAS  Google Scholar 

  51. M.K. Hussain, S.R. Saeed, M.R. Saeed, and S. Syrotyuk, Surface Effects on the Electronic and Optical Properties of the Mn3P Alloy for Optoelectronic Applications. Optik 242, 166667 (2021).

    Article  CAS  Google Scholar 

  52. Y. Pan, Influence of Oxygen Vacancies on the Electronic and Optical Properties of Zirconium Dioxide from First-Principles Calculations. J. Electron. Mater. 48, 5154 (2019).

    Article  CAS  Google Scholar 

  53. A. Boudjemline, M. Islam, L. Louail, and B. Diawara, Electronic and Optical Properties of BAs under Pressure. Phys. B 406, 4272 (2011).

    Article  CAS  Google Scholar 

  54. A. Zaoui, S. Kacimi, A. Yakoubi, B. Abbar, and B. Bouhafs, Optical Properties of BP, BAs and BSb Compounds under Hydrostatic Pressure. Phys. B 367, 195 (2005).

    Article  CAS  Google Scholar 

  55. Y. Xu and W.Y. Ching, Electronic, Optical, and Structural Properties of Some Wurtzite Crystals. Phy. Rev. B 48, 7 (1993).

    Article  Google Scholar 

  56. Y. Xu and W.Y. Ching, Calculation of Ground-State and Optical Properties of Boron Nitrides in the Hexagonal, Cubic, and Wurtzite Structures. Phy. Rev. B 44, 15 (1991).

    Article  Google Scholar 

  57. P.J. Gielisse, S.S. Mitra, J.N. Plendl, R.D. Griffis, L.C. Mansur, R. Marshall, and E.A. Pascoe, Lattice Infrared Spectra of Boron Nitride and Boron Monophosphide. Phys. Rev. 155, 1039 (1967).

    Article  CAS  Google Scholar 

  58. M.I. Eremets, M. Gauthier, A. Polian, J.C. Chervin, and J.M. Besson, Optical Properties of Cubic Boron Nitride. Phy. Rev. B 52, 12 (1995).

    Article  Google Scholar 

  59. S.M. Alay-e-Abbas and A. Sajid, FP-LAPW+lo Study of Structural, Electronic, and Optical Properties of Mg1−xSrxTe Alloys. Chin. Phys. Lett. 51, 801 (2013).

    Google Scholar 

  60. M. Dadeetan, B. Kianisadr, and H. Nejatipour, First Principles Investigation of the Optical Properties of BNxP1-x (0 ≤ x ≤ 1) Boron Ternary Alloys. J. Electron. Mater. 44, 2699 (2015).

    Article  Google Scholar 

  61. S. Wang, S.F. Swingle, H. Ye, F. Fan, A.H. Cowley, and A.J. Bard, Synthesis and Characterization of a p-Type Boron Arsenide Photoelectrode. J. Am. Chem. Soc. 134, 11056 (2012).

    Article  CAS  Google Scholar 

  62. A. Gassoumi, A.M. Alshehri, and N. Bouarissa, Electronic Structure and Optical Response for Zn1−xBex Se. Results Phys. 12, 1294 (2019).

    Article  Google Scholar 

  63. L. Yu, D. Li, S. Zhao, G. Li, and K. Yang, First Principles Study on Electronic Structure and Optical Properties of Ternary GaAs: Bi Alloy. Materials 5, 2486 (2012).

    Article  CAS  Google Scholar 

  64. M. Shakila, M. Kashif Masooda, M. Zafarb, S. Ahmad, A. Hussain, M.A. Gadhi, S.A. Buzdar, and T. Iqbal, Theoretical Study of Structural, Electronic and Optical Properties of InxGa1-xN Alloys. Optik 174, 739 (2018).

    Article  Google Scholar 

  65. M.K. Hussain and K.I. Inad, Theoretical Study of Surface Properties of New (0 0 1)- and (1 1 1)-Surface YCoCrGe Quaternary Heusler Compounds. Thin Solid Films 663, 100 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moaid K. Hussain.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M.K., Kahdum, B.J., Paudel, R. et al. Cubic Mixed Semiconductor BAs:N Compounds for Energy Harvesting and Photovoltaic Applications. J. Electron. Mater. 52, 258–269 (2023). https://doi.org/10.1007/s11664-022-09981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09981-1

Keywords

Navigation