Skip to main content
Log in

Spin polarization calculations and related properties of the surfaces of CoVTe alloy and interface with a BeTe semiconductor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Previous calculations indicate that the CoVTe half-Heusler alloy appears half-metallic (HM) with spin polarization equal to 100%. We predict the spin polarisation and related alloy properties for the CoVTe (001), (111), and (110) surfaces and interface with a BeTe semiconductor. All the calculations were based on the generalized gradient approximation (GGA) with the Clb structure, using a first-principles investigation. We find a weak relaxation with (001) terminations, meaning the two terminations are stable and have stronger relaxations with the V (111) surface. The (001) V–Te surface has half-metallicity (HM) preserved with the HM energy gap of 0.22 eV and full spin polarisation, so the surface is useful for applications in the field of spintronics when using thin films, while other surfaces showed a high spin polarisation with values of 85–96%. For The CoVTe/BeTe interface demonstrates a weak relaxation for both structures. For VTe–Te*, the HM is destroyed and the minority spin is close to the Fermi level, with a higher spin polarization equal to 93%. The VTe–Be configuration retains HM, suggesting it is a good candidate for spintronic applications. The values of the magnetic moment for the surface and interface are calculated because these values may change when used as a thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. de Groot, F. Mueller, P. Van Engen, K. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)

    ADS  Google Scholar 

  2. I. Žutić, J. Fabian, S. Samoa, Spintronics: fundamentals and application. Rev. Mod. Phys. 76, 323–410 (2004)

    ADS  Google Scholar 

  3. J.D. Boeck, W.V. Roy, J. Das et al., Technology and materials issues in semiconductor- based magneto electronics. Semi. Sci. Tech. 17, 342–354 (2002)

    ADS  Google Scholar 

  4. A. Hirohata, J. Sagar, L. Lari, L. Fleet, V. Lazarov, Heusler-alloy films for spintronic devices. Appl. Phys. A 111, 423–430 (2013)

    ADS  Google Scholar 

  5. A. Hirohata, K. Takanashi, Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 47, 193001 (2013)

    ADS  Google Scholar 

  6. K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. Stormer, Ultrahigh electron mobility in suspended grapheme. Solid State Commun. 146, 351 (2008)

    ADS  Google Scholar 

  7. G. Hu, Y. Suzuki, Negative spin polarization of Fe3O4 in magnetite/manganite-based junctions. Phys. Rev. Lett. 89, 276601 (2002)

    ADS  Google Scholar 

  8. J. Wei, N. Yeh, R. Vasquez, Tunneling evidence of half-metallic in La0.7Ca0.3MnO3. Phys. Rev. Lett. 79, 5150 (1997)

    ADS  Google Scholar 

  9. Z. Liu, H. Liu, X. Zhang, X. Zhang, J. Xiao, Z. Zhu, X. Dai, G. Liu, J. Chen, G. Wu, Large negative magnetoresistance in quaternary Heusler alloy Ni50Mn8Fe17Ga25 melt-spun ribbons”. Appl. Phys. Lett. 86, 18 (2005)

    Google Scholar 

  10. M. Hussain, O. Hassan, A. Algubili, Investigations of the electronic and magnetic structures of Zr2NiZ (Z = Ga, In, B) Heusler compounds: first principles study. J. Electro Mater 47, 6221–6228 (2018)

    ADS  Google Scholar 

  11. M. Hussain, G. Gao, K. Yao, Half-metallic properties of the new Ti 2 YPb(Y = Co, Fe) Heusler alloys. IJMPB 29, 1550175 (2015)

    ADS  Google Scholar 

  12. W. Han, R. Kawakami, M. Gmitra, J. Fabian, Graphene spintronics. Nat. Nanotechnol. 9, 794 (2014)

    ADS  Google Scholar 

  13. M. Hussain, G. Gao, K. Yao, Half-metallic properties in the new Ti2NiB Heusler alloy. J. Supercond. Nov. Magn. 28, 3285–3291 (2015)

    Google Scholar 

  14. J. Kübler, G. Fecher, C. Felser, Understanding the trend in the Curie temperatures of Co2-based Heusler compounds: Ab initio calculations. Phys. Rev. B. 76, 024414 (2007)

    ADS  Google Scholar 

  15. P. Brown, K. Neumann, P. Webster, K. Ziebeck, The magnetization distributions in some Heusler alloys proposed as half-metallic ferromagnets. J. Phys. D Appl. Phys. 12, 1827 (2000)

    Google Scholar 

  16. M. Hussain, K. Inad, Theoretical study of surface properties of new (0 0 1)- and (1 1 1)-surface YCoCrGe quaternary Heusler compounds. Thin Solid Films 663, 100–104 (2018)

    ADS  Google Scholar 

  17. M. Hussain, G. Gao, K. Yao, Investigations of the electronic and magnetic structures at Heusler alloy surface: Co2TiGe (0 0 1). J. Electro Spectro Relat. Phenom. 203, 45–50 (2015)

    Google Scholar 

  18. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66, 134428 (2002)

    ADS  Google Scholar 

  19. H. Huang, S. Luo, K. Yao, First-principles investigation of the electronic structure and magnetism of Heusler alloys CoMnSb and Co2MnSb. Phys. B 406, 1368–1373 (2011)

    ADS  Google Scholar 

  20. F. Casper, C. Felser, R. Seshadri, P. Sebastian, r P¨ottgen, Searching for hexagonal analogues of the Half-metallic half-Heusler XYZ compounds. J. Phys. D: Appl. Phys. 41, 035002 (2008)

    ADS  Google Scholar 

  21. M. Monroe, R. Khenata, H. Baltache, G. Murtaza, M. Abu-Jafar, A. Bouhemadou, S. BinOmran, D. Roached, Study of structural, electronic and magnetic properties of caffeine and Co2FeIn Heusler alloys. J. Magn. Magn. Mater. 394, 404–409 (2015)

    ADS  Google Scholar 

  22. L. Feng, E.K. Liu, W. Zhang, W. Wang, G. Wu, First-principles investigation of half-metallic ferromagnetism of half-Heusler compounds XYZ. J. Magn. Magn. Mater. 351, 92–97 (2014)

    ADS  Google Scholar 

  23. M. Zhang, X. Dai, H. Hu, G. Liu, Y. Cui, Z. Liu, J. Chen, J. Wang, G. Wu, Search for new half-metallic ferromagnets in semiHeusler alloys NiCrM (M = P, As, Sb, S, Se and Te). J. Phys. Condens. Matter. 15, 7891 (2003)

    ADS  Google Scholar 

  24. M. Hussain, Investigations of the electronic and magnetic properties of newly (001) surface LiCrS and LiCrSe half-Heusler compounds, appl. Phys. A 4, 124 (2018)

    Google Scholar 

  25. M. Hussain, K. Yao, Surface properties of the half-metallicity in ternary compounds: Fe(Cr, Mn)As based on different correlations. J. Magn. Magn. Mater. 478, 227–233 (2019)

    ADS  Google Scholar 

  26. S. Harrington, A. Rice, T. Brown-Heft, B. Bonef, A. Sharan, A. McFadden, J. Logan, M. Pendharkar, M. Feldman, O. Mercan, A. Petukhov, A. Janotti, L. Arslan, C. Palmstrøm, Growth, electrical, structural, and magnetic properties of half-Heusler CoTi1-xFexSb. Phys. Rev. Matter. 2, 014406 (2018)

    Google Scholar 

  27. S. Glover, T. Saerbeck, B. Kuerbanjiang, A. Ghasemi, D. Kepaptsoglou, Q. Ramasse, S. Yamada, K. Hamaya, T. Hase, V. Lazarov, G. Bell, Magnetic and structural depth profiles of Heusler alloy Co2FeAl0.5Si0.5 epitaxial films on Si (111). J. Phys. Cond. Matt. 30, 065801 (2018)

    ADS  Google Scholar 

  28. B. Kuerbanjiang, C. Love, D. Kepaptsoglou, Z. Nedelkoski, S. Yamada, C. Ghasemi, Q. Ramasse, K. Hamaya, S.A. Cavill, V. Lazarov, Effect of annealing on the structure and magnetic properties of Co2FeAl0.5Si0.5 thin films on Ge(111). J. Alloys Compd. 748, 323–327 (2018)

    Google Scholar 

  29. M. Sicot, P. Turban, S. Andrieu, A. Tagliaferri, C. DeNadai, N.B. Brookes, F. Bertran, F. Fortuna, Spin polarization at the NiMnSb/MgO(1 0 0) interface. J. Magn. Magn. Mater. 303, 54–59 (2006)

    ADS  Google Scholar 

  30. I. Galanakis, M. Ležaić, G. Bihlmayer, S. Blügel, Interface properties of NiMnSb/InP and NiMnSb/GaAs contacts, phys. Rev. B 71, 214431 (2005)

    Google Scholar 

  31. H. Han, W. Hu, G. Gao, K. Yao, Preserving stable 100% spin polarization at (111) heterostructures of half-metallic Heusler alloy Co2VGa with semiconductor PbS. J. Appl. Phys. 112, 083710 (2012)

    ADS  Google Scholar 

  32. S. YuanLin, X. BaoYang, Y. JunZhao, First-principle prediction of robust half-metallic Te-based half-Heusler alloys. J. Magn. Magn. Mater. 350, 119–123 (2014)

    ADS  Google Scholar 

  33. M. Segall, P. Lindan, M. Probert, C. Pickard, P. Hasnip, S. Clark, M. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14, 2717 (2002)

    ADS  Google Scholar 

  34. D. Singh, Planes waves, pseudo-potentials and the LAPW method (Kluwer Academic Publishers, Boston, 1994)

    Google Scholar 

  35. J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  36. S.H. Wei, A. Zunger, Electronic structure and phase stability of LiZnAs: a half ionic and half covalent tetrahedral semiconductor. Phys. Rev. Lett. 56, 528 (1986)

    ADS  Google Scholar 

  37. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. 30, 244–247 (1944)

    MathSciNet  MATH  ADS  Google Scholar 

  38. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater-Pauling behavior of the half-ferromagnetic full-Heusler alloys. Phys. Rev. B 66, 174429 (2002)

    ADS  Google Scholar 

  39. T. Block, M. Carey, B. Gurney, O. Jepsen, Band-structure calculations of the half-metallic ferromagnetism and structural stability of full- and half-Heusler phases. Phys. Rev. B 70, 205114 (2004)

    ADS  Google Scholar 

  40. B. Bialek, J. Lee, Half-metallic properties of the (1 1 0) surface of alkali earth metal monosilicides in the zinc blende phase Semicond. Sci. Technol. 26, 125018 (2011)

    ADS  Google Scholar 

  41. B. Wu, H. Yuan, A. Kuang, H. Chen, Y. Feng, Thermodynamic stability, magnetism and half-metallicity of Heusler alloy Co2MnX(X = Si, Ge, Sn)(1 0 0) surface. Appl. Surf. Sci. 258, 4945–4951 (2012)

    ADS  Google Scholar 

  42. N. Ghaderi, S.J. Hashemifar, H. Akbarzadeh, First principle study of Co2MnSi/GaAs(001) heterostructures. J. Appl. Phys. 102, 074306 (2007)

    ADS  Google Scholar 

  43. J. Attema, G. de Wijs, R. de Groot, The continuing drama of the half-metal/semiconductor interface. J. Phys. D Appl. Phys. 39, 793 (2006)

    ADS  Google Scholar 

  44. H. Wang, M. Przybylski, W. Kuch, I. Chelaru, L.J. Wang, Y.F. Lu, J. Barthel, H.L. Meyerheim, J. Kirschner, Magnetic properties and spin polarization of Co2 MnSi Heusler alloy thin films epitaxially grown on GaAs(001) Phys. Rev. B 71, 144416 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai lun Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, M.K., Yao, K.l. Spin polarization calculations and related properties of the surfaces of CoVTe alloy and interface with a BeTe semiconductor. Appl. Phys. A 125, 463 (2019). https://doi.org/10.1007/s00339-019-2752-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2752-0

Navigation