Skip to main content
Log in

Investigation into the physical characteristics of the compounds XBiSe2 (X = Li, Na or K)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

As new materials, the ternary chalcogenides have recently brought scientists' attention. These materials are a novel class of semiconducting chemical compounds. They allow the increase of the photo-conversion efficiency, the performance, and the cheap energy cost. Such materials also provide a wide range of physical and chemical applications.

Methods

The used investigation employs Density Functional Theory (DFT) implemented in the Wien2k package to systematically characterize the physical properties of ternary chalcogenide compounds XBiSe2 (X = Li, Na and K). Such method emphasizes their applicability to energy conversion technologies. Scrutinizing their electronic, optical, and thermoelectric properties elucidates the effect of alkali metal substitution on performance metrics. The results not only advance knowledge of these materials' physicochemical behaviors but also reveal their potential for tailored functionalization in next-generation energy and optoelectronic systems, marking a significant stride in material science and application-oriented research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Devika RS, Venkatesh P, Shyju TS (2023) Review on ternary chalcogenides: potential photoabsorbers. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.04.113

  2. Ali Benghia A, Mechraoui BK, Ferchane S, Lefkaier IK, Fadla MA, Hebboul Z, Arar R, Kanoun MB, Said SG (2023) Data driven enhancement of mid-infrared non-linear optical properties of quaternary and ternary chalcogenides. Optik 293:171432. https://doi.org/10.1016/j.ijleo.2023.171432

    Article  Google Scholar 

  3. Ge B, Chen B, Li L (2021) Ternary transition metal chalcogenides Ti2PX2 (X = S, Se, Te) anodes for high performance metal-ion batteries: a DFT study. Appl Surf Sci 550:149177. https://doi.org/10.1016/j.apsusc.2021.149177

    Article  CAS  Google Scholar 

  4. Mehta N, Singh K, Kumar A (2009) On the glass transition phenomenon in Se–Te and Se–Ge based ternary chalcogenide glasses. Phys B: Condensed Matter 404:1835–1839. https://doi.org/10.1016/j.physb.2009.02.032

    Article  CAS  Google Scholar 

  5. Ates M, Yılmaz E, Tanaydın MK (2021) Challenges, novel applications, and future prospects of chalcogenides and chalcogenide-based nanomaterials for photocatalysis. Chalcogenide-based nanomaterials as photocatalysts. Elsevier, pp 307–337. https://doi.org/10.1016/B978-0-12-820498-6.00014-7

  6. McKeever H, Patil N, Palabathuni M, Singh S (2023) Functional alkali metal-based ternary chalcogenides: design, properties, and opportunities. Chem Mater 35:9833–9846. https://doi.org/10.1021/acs.chemmater.3c01652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zubair M, Lebedev VA, Mishra M, Adegoke TE, Amiinu IS, Zhang Y, Cabot A, Singh S, Ryan KM (2022) Precursor-mediated colloidal synthesis of compositionally tunable Cu–Sb–M–S (M = Zn Co, and Ni) nanocrystals and their transport properties. Chem Mater 34:10528–10537. https://doi.org/10.1021/acs.chemmater.2c02605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kapuria N, Nan B, Adegoke TE, Bangert U, Cabot A, Singh S, Ryan KM (2023) Colloidal synthesis of multinary alkali-metal chalcogenides containing Bi and Sb: an emerging class of I-V–VI2 nanocrystals with tunable composition and interesting properties. Chem Mater 35(12):4810–4820. https://doi.org/10.1021/acs.chemmater.3c00673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heciri D, Belkhir H, Belghit R, Bouhafs B, Khenata R, Ahmed R, Bouhemadou A, Ouahrani T, Wang X, Bin Omran S (2019) Insight into the structural, elastic and electronic properties of tetragonal inter-alkali metal chalcogenides CsNaX (X=S, Se, and Te) from first-principles calculations. Mater Chem Phys 221:125–137. https://doi.org/10.1016/j.matchemphys.2018.09.024

    Article  CAS  Google Scholar 

  10. Salomé PMP, Rodriguez-Alvarez H, Sadewasser S (2015) Incorporation of alkali metals in chalcogenide solar cells. Solar Energy Mater Solar Cells 143:9–20. https://doi.org/10.1016/j.solmat.2015.06.011

    Article  CAS  Google Scholar 

  11. Tang J, Feng M, Huang X (2024) Metal chalcogenides as ion-exchange materials for the efficient removal of key radionuclides: a review. Fundam Res. https://doi.org/10.1016/j.fmre.2023.10.022

    Article  Google Scholar 

  12. Wu P, Ibers JA (1995) Quaternary chalcogenides containing a rare earth and an alkali- or alkaline-earth metal. J Alloy Compd 229:206–215. https://doi.org/10.1016/0925-8388(95)01676-7

    Article  CAS  Google Scholar 

  13. Zhang Z, Zhang W, Hou Z-W, Li P, Wang L (2023) Electrophilic halospirocyclization of N-benzylacrylamides to access 4-halomethyl-2-azaspiro[4.5]Decanes. J Org Chem 88:13610

    Article  CAS  PubMed  Google Scholar 

  14. Zuo W, Zuo L, Geng X, Li Z, Wang L (2023) Photoinduced C-H heteroarylation of enamines via quadruple cleavage of CF2Br 2. Org Chem Front 10:6112

    Article  CAS  Google Scholar 

  15. Wang N et al (2024) Acetate ions facilitated immobilization of highly dispersed transition metal oxide nanoclusters in mesoporous silica. Inorg Chem 63:4393

    Article  CAS  PubMed  Google Scholar 

  16. Seddik T, Khenata R, Bouhemadou A, Rached D, Varshney D, Bin-Omran S (2012) Structural, electronic and elastic properties of the new ternary alkali metal chalcogenides KLiX (X=S, Se and Te). Comput Mater Sci 61:206–212. https://doi.org/10.1016/j.commatsci.2012.04.020

    Article  CAS  Google Scholar 

  17. Palchoudhury S, Ramasamy K, Han J, Chen P, Gupta A (2023) Transition metal chalcogenides for next-generation energy storage. Nanoscale Adv 5:2724–2742. https://doi.org/10.1039/d2na00944g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen H, Ran MY, Wei WB, Wu XT, Lin H, Zhu QL (2022) A comprehensive review on metal chalcogenides with three-dimensional frameworks for infrared nonlinear optical applications. Coord Chem Rev 470:214706. https://doi.org/10.1016/j.ccr.2022.214706

    Article  CAS  Google Scholar 

  19. Xiao JR, Yang SH, Feng F, Xue HG, Guo SP (2017) A review of the structural chemistry and physical properties of metal chalcogenide halides. Coord Chem Rev 347:23–47. https://doi.org/10.1016/j.ccr.2017.06.010

    Article  CAS  Google Scholar 

  20. Vivanco HK, Rodriguez E (2016) The intercalation chemistry of layered iron chalcogenide superconductors. J Solid State Chem 242, Part 2:3–21. https://doi.org/10.1016/j.jssc.2016.04.008

    Article  CAS  Google Scholar 

  21. Diksha, Manyani. N, Tripathi SK (2023) Tuning band gap, structural and optical properties of tin selenide nanoparticles by alkali metal doping. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.02.273

  22. Bogoslovskij NA, Tsendin KD (2011) Electronic–thermal switching and memory in chalcogenide glassy semiconductors. J Non-Cryst Solids 357:992–995. https://doi.org/10.1016/j.jnoncrysol.2010.11.048

    Article  CAS  Google Scholar 

  23. Ahmad M, Aly KA, Dahshan A, Saddeek Y, Zakaly MH, AbdElnaeim AM, Ene A (2022) Physical characterization and crystallization kinetics of amorphous BiSe chalcogenide glasses. J Mater Res Technol 16:1114–1121. https://doi.org/10.1016/j.jmrt.2021.12.073

    Article  CAS  Google Scholar 

  24. Adapa VSK, Ramakrishnan A, Heinz NA, Dinda GP (2019) Microstructural evolution during laser metal deposition of bismuth chalcogenides (Bi2Se3 and Bi2Te3). J Alloys Compd 774:509–514. https://doi.org/10.1016/j.jallcom.2018.10.063

    Article  CAS  Google Scholar 

  25. Oosawa Y, Gotoh Y, Akimoto J, Sohma M, Tsunoda T, Hayakawa H, Onoda M (1997) Preparation, characterization and intercalation of ternary chalcogenides with layered composite crystal structures formed in the Bi Ta S and Bi Ta Se systems. Solid State Ionics 101–103, Part 1:9–16. https://doi.org/10.1016/S0167-2738(97)84002-7

    Article  Google Scholar 

  26. Nader A, Briggs A, Gotoh Y (1997) Superconductivity in the misfit layer compounds (BiSe)1.10(NbSe2) and (BiS)1.11(NbS2). Solid State Commun 101:149–153. https://doi.org/10.1016/S0038-1098(97)80006-3

    Article  CAS  Google Scholar 

  27. Verma MK, Kumar K, Kumar R, Sharma M (2023) Nitrogen and phosphorus substitution driven optical anisotropy in bismuth chalcogenides XBi7Y12 (X=Bi, N, P; Y=S, Se) from visible to IR region. Comput Condensed Matter 37:e00843. https://doi.org/10.1016/j.cocom.2023.e00843

    Article  Google Scholar 

  28. Ni J, Bi X, Jiang Y, Li L, Lu J (2017) Bismuth chalcogenide compounds Bi2×3 (X=O, S, Se): applications in electrochemical energy storage. Nano Energy 34:356–366. https://doi.org/10.1016/j.nanoen.2017.02.041

    Article  CAS  Google Scholar 

  29. Caño I, Vidal-Fuentes P, GonMedaille A, Jehl Z, Jiménez-Arguijo A, Guc M, Izquierdo-Roca V, Malerba C, Valentini M, Jiménez-Guerra M, Placidi M, Puigdollers J, Saucedo E (2023) Challenges and improvement pathways to develop quasi-1D (Sb1-xBix)2Se3-based materials for optically tuneable photovoltaic applications. Towards chalcogenide narrow-bandgap devices. Solar Energy Mater Solar Cells 251:112150. https://doi.org/10.1016/j.solmat.2022.112150

    Article  CAS  Google Scholar 

  30. Sahoo D, Naik R (2022) A review on the linear/nonlinear optical properties of Se doped chalcogenide thin films as potential optoelectronic applications. J Non-Cryst Solids 597:121934. https://doi.org/10.1016/j.jnoncrysol.2022.121934

    Article  CAS  Google Scholar 

  31. Mishra S, Lohia P, Dwivedi DK (2019) Structural and optical properties of (Ge11.5 Se67.5 Te12.5)100−x Sbx (0 ≤ x ≤ 30) chalcogenide glasses: a material for IR devices. Infrared Phys Technol 100:109–116. https://doi.org/10.1016/j.infrared.2019.05.001

    Article  CAS  Google Scholar 

  32. Iyer AK, He J, Xie H, Goodling D, Chung DY, Gopalan V, Kanatzidis MG (2023) Stabilization of the polar structure and giant second-order nonlinear response of single crystal γ-NaAs0.95Sb0.05Se2. Adv Funct Mater 33:2211969. https://doi.org/10.1002/adfm.202211969

    Article  CAS  Google Scholar 

  33. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H-M (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem 10:667

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, Tang Y, Zhang F, Lee C-S (2016) A novel aluminum-graphite dual-ion battery. Adv Energy Mater 6:1502588

    Article  Google Scholar 

  35. Wei T, Sun C, Guo X, Zhou Y, Wang M, Qiu X, Wang Q, Tang Y (2024) Petaloid bimetallic metal-organic frameworks derived ZnCo2O4/ZnO nanosheets enabled intermittent lithiophilic model for dendrite-free lithium metal anode. J Colloid Interface Sci 664:596

    Article  CAS  PubMed  Google Scholar 

  36. Khalid M, Mahmoud KA, Hasan M, Sayyed MI, Abu Baker MA, Alajerami YSM (2024) Assessing the efficiency of lead-free XCr2Te4 chalcogenide spinels alloys in ionizing radiation attenuation: a study with MCNP-code. Radiat Phys Chem:111652. https://doi.org/10.1016/j.radphyschem.2024.111652.

  37. Fabian M, Svab E, Pamukchieva V, Szekeres A, Todorova K, Vogel S, Ruett U (2013) Reverse Monte Carlo modeling of the neutron and X-ray diffraction data for new chalcogenide Ge–Sb–S(Se)–Te glasses. J Phys Chem Solids 74:1355–1362. https://doi.org/10.1016/j.jpcs.2013.05.011

    Article  CAS  Google Scholar 

  38. Thakur N, Kumar P, Sharma P (2023) Simulation study of chalcogenide perovskite (BaZrSe3) solar cell by SCAPS-1D. Mater Today: Proc. https://doi.org/10.1016/j.matpr.2023.01.012

    Article  Google Scholar 

  39. Ahmad M, Hussain I, Nawaz T, Li Y, Chen X, Ali S, Imran M, Ma X, Zhang K (2022) Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te): formation process, charge storage mechanism and hybrid supercapacitor. J Power Sources 534:231414. https://doi.org/10.1016/j.jpowsour.2022.231414

    Article  CAS  Google Scholar 

  40. Salman Khan M, Gul B, Khan G, Ali Khattak S, Ajaz M, Khan T, Zulfiqar S (2022) Exploring the exemplary electronic and optical nature in NaInX2 (X = S, Se and Te) ternary type chalcogenides materials: a GGA+U and hybrid functionals study. J Solid State Chem 307:122853. https://doi.org/10.1016/j.jssc.2021.122853

    Article  CAS  Google Scholar 

  41. Kaseman DC, Sen S (2021) A review of the application of 2D isotropic-anisotropic correlation NMR spectroscopy in structural studies of chalcogenide glasses. J Non-Cryst Solids 561:120500. https://doi.org/10.1016/j.jnoncrysol.2020.120500

    Article  CAS  Google Scholar 

  42. Zhu X (2022) Recent advances of transition metal oxides and chalcogenides in pseudo-capacitors and hybrid capacitors: a review of structures, synthetic strategies, and mechanism studies. J Energy Storage 49:104148. https://doi.org/10.1016/j.est.2022.104148

    Article  Google Scholar 

  43. Shah SZA, Niaz S, Ahmed F, Abbas Z, Parveen A, Ramay SM (2024) Tuning the optoelectronic and thermoelectric properties of vacancy-ordered halide perovskites Cs2Ge(1-x)PtxCl6 (X=0, 0.25, 0.50, 0.75 and 1.00) via substitutional doping of Pt using first-principles approach. Mater Chem Phys 315:128947

    Article  Google Scholar 

  44. Shah SZA, Hussain D, Abbas Z, Niaz S, Parveen A, Sifuna J, Muhammad S, Rasool Chaudhry A (2024) Unveiling the DFT perspectives on structural, elastic, optoelectronic, and thermoelectric properties of zirconate perovskites XZrO3 (X = Ca, Sr, Ba). Inorg Chem Commun 163:112304

    Article  Google Scholar 

  45. Shah SZA, Niaz S, Nasir T, Sifuna J, Ramay SM, A, (2023) DFT computational design and exploration of direct band gap silver-thallium double perovskites. Mater Sci Eng: B 298:116846

    Article  Google Scholar 

  46. Blaha P, Schwarz K, Sorantin P, Trickey SB (1990) Full-potential, linearized augmented plane wave programs for crystalline systems. Comput Phys Commun 59:399–415

    Article  CAS  Google Scholar 

  47. Blaha P, Schwarz K, Tran F, Laskowski R, Madsen GKH, Marks LD (2020) WIEN2k: an APW+lo program for calculating the properties of solids. J Chem Phys 152:074101. https://doi.org/10.1063/1.5143061

    Article  CAS  PubMed  Google Scholar 

  48. Madsen GKH, Singh DJ (2024) BoltzTraP. A code for calculating band-structure dependent quantities. https://arxiv.org/abs/cond-mat/0602203v1. Accessed 2 May 2024

  49. Tyuterev VG, Nathalie V (2006) Murnaghan’s equation of state for the electronic ground state energy. Comput Mater Sci 38:350–353

    Article  CAS  Google Scholar 

  50. Baaalla N, Absike H, Ammari Y, Hlil EK, Masrour R, Benyoussef A, El Kenz A (2022) An extensive investigation of structural, electronic, optical, magnetic, and thermoelectric properties of NaMnAsO4 cluster by first-principles calculations. Int J Energy Res 46:9586–9601

    Article  CAS  Google Scholar 

  51. Herzfeld KF, Goeppert-Mayer M (1936) On the theory of dispersion. Phys Rev 49:332–339

    Article  Google Scholar 

  52. Toll JS (1956) Causality and the dispersion relation: logical foundations. Phys Rev 104:1760–1770

    Article  Google Scholar 

  53. Ambrosch-Draxl C, Sofo JO (2006) Linear optical properties of solids within the full-potential linearized augmented plane wave method. Comput Phys Commun 175:1–14

    Article  CAS  Google Scholar 

  54. Hutchings DC et al (1992) Kramers-Krönig relations in nonlinear optics. Opt Quant Electron 24:1–30

    Article  CAS  Google Scholar 

  55. Kumar S, Kumar N, Yadav K, Kumar A, Singh RP (2020) DFT investigations on optoelectronic spectra and thermoelectric properties of barium cadmium disulphide (BaCdS2). Optik 207:163797

    Article  CAS  Google Scholar 

  56. Madsen GKH, Singh DJ (2006) BoltzTraP. A code for calculating band-structure dependent quantities. Comput Phys Commun 175:67–71. https://doi.org/10.1016/j.cpc.2006.03.007

    Article  CAS  Google Scholar 

  57. Zhao LD, Wu HJ, Hao SQ, Wu CI, Zhou XY, Biswas K, He JQ, Hogan TP, Uher C, Wolverton C, Dravid VP, Kanatzidis MG (2013) All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance. Energy Environ Sci 6:3346–3355

    Article  CAS  Google Scholar 

  58. Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V (2011) Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput Phys Commun 182(10):2232–2248. https://doi.org/10.1016/j.cpc.2011.05.009

    Article  CAS  Google Scholar 

  59. Zhang Y (2016) First-principles Debye-Callaway approach to lattice thermal conductivity. J Materiomics 2(3):237–247. https://doi.org/10.1016/j.jmat.2016.06.004

    Article  Google Scholar 

  60. Liu R, Chen X, Qiu P, Liu J, Yang J, Huang X, Chen L (2011) Low thermal conductivity and enhanced thermoelectric performance of Gd-filled skutterudites. J Appl Phys 109:023719. https://doi.org/10.1063/1.3533743

    Article  CAS  Google Scholar 

  61. Biswas D, Mondal R (2024) Tailoring of physical, optical, and thermal properties of Se50-xTe30Ge20Sbx chalcogenide glasses: influence of metalloids. Mater Today Commun 38:108501. https://doi.org/10.1016/j.mtcomm.2024.108501

    Article  CAS  Google Scholar 

  62. Diab AK, Wakkad MM, Shokr EK, Mohamed WS (2015) Structural and electrical properties of In35Sb45Se20−xTex chalcogenide thin films. Optik - Int J Light Electron Optics 126:1855–1860. https://doi.org/10.1016/j.ijleo.2015.05.014

    Article  CAS  Google Scholar 

  63. Baaalla N, Absike H, Ammari Y, Masrour R, Benyoussef A, Kenz A (2022) An extensive investigation of structural, electronic, optical, magnetic, and thermoelectric properties of NaMnAsO4 cluster by first‐principles calculations. Int J Energy Res 46. https://doi.org/10.1002/er.7827

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

N.M. and S.B. wrote the main manuscript text. A. J. and L. B. prepared figures. All authors contributed and reviewed the manuscript.

Corresponding author

Correspondence to L. Bahmad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabar, A., Maaouni, N., Benyoussef, S. et al. Investigation into the physical characteristics of the compounds XBiSe2 (X = Li, Na or K). J Mol Model 30, 158 (2024). https://doi.org/10.1007/s00894-024-05960-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05960-x

Keywords

Navigation