Skip to main content
Log in

Defect Repair of Thermally Reduced Graphene Oxide by Gold Nanoparticles as a p-Type Transparent Conductor

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (rGO) is among only a few p-type transparent conductors. This article describes the use of pre-decoration of gold nanoparticles (AuNPs) to tune the optoelectronic properties of rGO film. High-purity Au is sputtered on GO film before the thermal reduction process at 825°C in a H2/CH4 environment. For the optimum 30 s Au sputtering, a high-temperature process transformed the Au nanoballs into nanowires. These conditions resulted in the maximum hole mobility of 158.99 cm2 V−1 s−1 and the minimum sheet resistance of 325.82 Ω□−1. The degree of reduction for the rGO-Au(30s) sample was the highest, since it had the lowest optical transmittance of 0.871 and the lowest bandgap of 3.75 eV. It thus represents the best p-type transparent conductor, with a figure of merit σdc/σop of approximately 8.11. The deconvoluted Raman fit elaborates more on the elimination of defect components on the rGO samples. The integrated area ratio for several defect peaks over a pristine peak was the lowest for the rGO-Au(30s), at 3.98. The AuNPs intervened in the reduction process by repairing the lattice defects for the in-plane carbon sp2, edge, amorphous phase, and out-of-plane sp2sp3. This was responsible for the great improvement in the carrier transport mechanism and the value of σdc/σop.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Soriadi, M.F. Abdullah, F.S.M. Yakin, S.A.M. Badaruddin, and M.I. Syono, Mater. Today Proc. 42, 2948–2952 (2021).

    Article  CAS  Google Scholar 

  2. P. Kumar, S. Penta, and S.P. Mahapatra, J. Electron. Mater. 49, 5801–5807 (2020).

    Article  CAS  Google Scholar 

  3. M.F. Abdullah, S.A.M. Badaruddin, M.R.M. Hussin, and M.I. Syono, J. Teknol. 83, 53–59 (2021).

    Article  Google Scholar 

  4. S.S. Hosseini, and M. Adelifard, J. Electron. Mater. 49, 5790–5800 (2020).

    Article  CAS  Google Scholar 

  5. M.Z.H. Khan, S.M.F. Shahed, N. Yuta, and T. Komeda, J. Electron. Mater. 46, 4160–4165 (2017).

    Article  CAS  Google Scholar 

  6. M.F. Abdullah, and A.M. Hashim, Mater. Sci. Semicond. Process. 96, 137–144 (2019).

    Article  CAS  Google Scholar 

  7. A.B. Kaiser, C.G. Navarro, R.S. Sundaram, M. Burghard, and K. Kern, Nano Lett. 9, 1787–1792 (2009).

    Article  CAS  Google Scholar 

  8. J. Lim, K. Choi, J.R. Rani, J.S. Kim, C. Lee, J.H. Kim, and S.C. Jun, J. Appl. Phys. 113, 183502 (2013).

    Article  Google Scholar 

  9. X. Wang, S. Jin, R. Zhang, Y. Liu, J. Wang, Z. Hu, W. Lu, S. Yang, M. Jin, W. Qiao, and L. Ling, NANO 14, 1950038 (2019).

    Article  CAS  Google Scholar 

  10. K.H. Ibrahim, M. Irannejad, B. Wales, J. Sanderson, K.P. Musselman, and M. Yavuz, J. Electron. Mater. 47, 1117–1124 (2018).

    Article  CAS  Google Scholar 

  11. Y. Shi, G. Liu, R. Jin, H. Xu, Q. Wang, and S. Gao, Carbon Energy 1, 253–275 (2019).

    Article  CAS  Google Scholar 

  12. Y. Zhang, S. Deng, Y. Li, B. Liu, G. Pan, Q. Liu, X. Wang, X. Xia, and J. Tu, Energy Stor. Mater. 29, 52–59 (2020).

    Article  CAS  Google Scholar 

  13. S. Shen, R. Zhou, Y. Li, B. Liu, G. Pan, Q. Liu, Q. Xiong, X. Wang, X. Xia, and J. Tu, Small Methods 3, 1900596 (2019).

    Article  CAS  Google Scholar 

  14. Y. Zhang, S. Deng, G. Pan, H. Zhang, B. Liu, X.L. Wang, X. Zheng, Q. Liu, X. Wang, X. Xia, and J. Tu, Small Methods 4, 1900828 (2020).

    Article  CAS  Google Scholar 

  15. H. Wang, and Y. Cui, Carbon Energy 1, 13–18 (2019).

    Article  Google Scholar 

  16. Y. Wu, W. Jiang, Y. Ren, W. Cai, W.H. Lee, H. Li, R.D. Piner, C.W. Pope, Y. Hao, H. Ji, J. Kang, and R.S. Ruoff, Small 8, 3129–3136 (2012).

    Article  CAS  Google Scholar 

  17. A.K. Kang, M.H. Zandi, and N.E. Gorji, J. Electron. Mater. 49, 2289–2295 (2020).

    Article  CAS  Google Scholar 

  18. M. Saglam, B. Guzeldir, A. Turut, and D. Ekinci, J. Electron. Mater. 50, 4752–4761 (2021).

    Article  CAS  Google Scholar 

  19. K.H.L. Zhang, K. Xi, M.G. Blamire, and R.G. Egdell, J. Phys. Condens. Matter 28, 383002 (2016).

    Article  Google Scholar 

  20. M. Taheri, Z. Feizabadi, S. Jafari, and N. Mansour, J. Electron. Mater. 47, 7232–7239 (2018).

    Article  CAS  Google Scholar 

  21. H. Naser, M.A. Alghoul, M.K. Hossain, N. Asim, M.F. Abdullah, M.S. Ali, F.G. Alzubi, and N. Amin, J. Nanopart. Res. 21, 249 (2019).

    Article  CAS  Google Scholar 

  22. M.F. Abdullah, N. Soriadi, F.S.M. Yakin, S.A.M. Badaruddin, and M.I. Syono, Mater. Sci. Semicond. Process. 112, 105017 (2020).

    Article  CAS  Google Scholar 

  23. A.A.K. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church, A.T. Harris, J.M. Razal, and A.I. Minett, Sci. Rep. 6, 19491 (2016).

    Article  CAS  Google Scholar 

  24. M.F. Abdullah, NANO 16, 2150067 (2021).

    Article  CAS  Google Scholar 

  25. C.V. Thompson, Annu. Rev. Mater. Res. 42, 399–434 (2012).

    Article  CAS  Google Scholar 

  26. F. Werner, J. Appl. Phys. 122, 135306 (2017).

    Article  Google Scholar 

  27. C.Y. Cho, M. Choe, S.J. Lee, S.H. Hong, T. Lee, W. Lim, S.T. Kim, and S.J. Park, J. Appl. Phys. 113, 113102 (2013).

    Article  Google Scholar 

  28. P.H. Ho, Y.T. Liou, C.H. Chuang, S.W. Lin, C.Y. Tseng, D.Y. Wang, C.C. Chen, W.Y. Hung, C.Y. Wen, and C.W. Chen, Adv. Mater. 27, 1724–1729 (2015).

    Article  CAS  Google Scholar 

  29. Y. Wang, Y. Chen, S.D. Lacey, L. Xu, H. Xie, T. Li, V.A. Danner, and L. Hu, Mater. Today. 21, 186–192 (2018).

    Article  CAS  Google Scholar 

  30. F.S.M. Yakin, M.F. Abdullah, S.A.M. Badaruddin, M.I. Syono, and N. Soriadi, Mater. Today Proc. 42, 2996–3001 (2021).

    Article  Google Scholar 

  31. W. Li, G. Cheng, Y. Liang, B. Tian, X. Liang, L. Peng, A.R.H. Walker, D.J. Gundlach, and N.V. Nguyen, Carbon 99, 348–353 (2016).

    Article  CAS  Google Scholar 

  32. M.F. Abdullah, and A.M. Hashim, J. Mater. Sci. 54, 911–948 (2019).

    Article  CAS  Google Scholar 

  33. S. De, and J.N. Coleman, ACS Nano 4, 2713–2720 (2010).

    Article  CAS  Google Scholar 

  34. J. Ning, L. Hao, M. Jin, X. Qiu, Y. Shen, J. Liang, X. Zhang, B. Wang, X. Li, and L. Zhi, Adv. Mater. 29, 1605028 (2017).

    Article  Google Scholar 

  35. J.B. Wu, M.L. Lin, X. Cong, H.N. Liu, and P.H. Tan, Chem. Soc. Rev. 47, 1822–1873 (2018).

    Article  CAS  Google Scholar 

  36. A.K. Jehad, K. Kocabas, and M. Yurddaskal, J. Mater. Sci. Mater. Electron. 31, 7022–7034 (2020).

    Article  CAS  Google Scholar 

  37. M.F. Abdullah, S.F.A. Rahman, and A.M. Hashim, Phys. Status Solidi A 216, 1900064 (2019).

    Article  Google Scholar 

  38. S. Shen, W. Guo, D. Xie, Y. Wang, S. Deng, Y. Zhong, X. Wang, X. Xia, and J. Tu, J. Mater. Chem. A. 6, 20195–20204 (2018).

    Article  CAS  Google Scholar 

  39. D.L. Diaz, M.L. Holgado, J.L.G. Fierro, and M.M. Velazquez, J. Phys. Chem. C. 121, 20489–20497 (2017).

    Article  Google Scholar 

  40. A.Y. Lee, K. Yang, N.D. Anh, C. Park, S.M. Lee, T.G. Lee, and M.S. Jeong, Appl. Surf. Sci. 536, 147990 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was internally funded by MIMOS Bhd. The author appreciates supports from MIMOS Semiconductor Sdn Bhd on material processing and characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Faizol Abdullah.

Ethics declarations

Conflict of interest

The author declares there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, M.F. Defect Repair of Thermally Reduced Graphene Oxide by Gold Nanoparticles as a p-Type Transparent Conductor. J. Electron. Mater. 50, 6795–6803 (2021). https://doi.org/10.1007/s11664-021-09198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09198-8

Keywords

Navigation