Skip to main content

Advertisement

Log in

Review and assessment of photovoltaic performance of graphene/Si heterojunction solar cells

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The number of studies on graphene/Si heterojunction solar cells has increased dramatically in recent years. The integration of graphene into Si photovoltaic has resulted in high power conversion efficiencies exceeding 15% in several notable applications. The need for a single compilation to discuss the issues recently discovered in the current works is necessary to help with a smooth progression and, most importantly, to understand the best direction to take when designing a high-efficiency Si-based solar cell. This article reviews and compares the remarkable findings in graphene/Si heterojunction, focusing on their photovoltaic performance indicators along with their improvement features. First, we discuss the open circuit voltage of the heterojunction and highlight the important and problematic parts. Next, the efforts to maximize the short circuit current from graphene/Si solar cells are elaborated, followed closely by the main issues in fill factor. The emphasis on power conversion efficiency is given in the following section, which is alarming for this new photovoltaic device. The article concludes with the prospect, aim and direction for graphene/Si heterojunction solar cells, along with a brief discussion regarding the potential for utilizing low-cost reduced graphene oxide in Si solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Fraunhofer ISE (2017) Photovoltaics report

  2. Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2:96–102

    Google Scholar 

  3. Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K (2017) Silicon heterojunction solar cell with interdigitated backcontacts for a photoconversion efficiency over 26%. Nat Energy 2:17032

    CAS  Google Scholar 

  4. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Ebinger JH, Baillie AWYH (2018) Solar cell efficiency tables (version 51). Prog Photovolt Res Appl 26:3–12

    Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  6. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  Google Scholar 

  7. Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6:858–861

    CAS  Google Scholar 

  8. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    CAS  Google Scholar 

  9. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308

    CAS  Google Scholar 

  10. Yin Z, Zhu J, He Q, Cao X, Tan C, Chen H, Yan Q, Zhang H (2013) Graphene-based materials for solar cell applications. Adv Energy Mater 4:1–19

    Google Scholar 

  11. Zheng Q, Li Z, Yang J, Kim JK (2014) Graphene oxide-based transparent conductive films. Prog Mater Sci 64:200–247

    CAS  Google Scholar 

  12. Li X, Lv Z, Zhu H (2015) Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater 27:6549–6574

    CAS  Google Scholar 

  13. Di Bartolomeo A (2016) Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction. Phys Rep 606:1–58

    Google Scholar 

  14. Bhopal MF, Lee DW, Ur Rehman A, Lee SH (2017) Past and future of graphene/silicon heterojunction solar cells: a review. J Mater Chem C 5:10701–10714

    CAS  Google Scholar 

  15. Cuevas A, Yan D (2013) Misconceptions and misnomers in solar cells. IEEE J Photovolt 3:916–922

    Google Scholar 

  16. Wurfel U, Cuevas A, Wurfel P (2015) Charge carrier separation in solar cells. IEEE J Photovolt 6:461–469

    Google Scholar 

  17. Lindroos J, Savin H (2016) Review of light-induced degradation in crystalline silicon solar cells. Sol Energy Mater Sol Cells 147:115–126

    CAS  Google Scholar 

  18. Green MA, Zhao J, Wang A, Wenham SR (2001) Progress and outlook for high-efficiency crystalline silicon solar cells. Sol Energy Mater Sol Cells 65:9–16

    CAS  Google Scholar 

  19. Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9:1552–1576

    CAS  Google Scholar 

  20. Hodes G, Thompson L, DuBow J, Rajeshwar K (1983) Heterojunction silicon/indium tin oxide photoelectrodes: development of stable systems in aqueous electrolytes and their applicability to solar energy conversion and storage. J Am Chem Soc 105:324–330

    CAS  Google Scholar 

  21. Green MA, Chong CM, Zhang F, Sproul A, Zolper J, Wenham SR (1988) 20% efficient laser grooved, buried contact silicon solar cells. In: IEEE Photovoltaic Specialist Conference, Las Vegas, Nevada, pp 411–414

  22. Yuwen Z, Zhongming L, Chundong M, Shaoqi H, Zhiming L, Yuan Y, Zhiyun C (1997) Buried-contact high efficiency silicon solar cell with mechanical grooving. Sol Energy Mater Sol Cells 48:167–172

    CAS  Google Scholar 

  23. Zhao J, Wang A, Green MA (2001) High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates. Sol Energy Mater Sol Cells 65:429–435

    CAS  Google Scholar 

  24. Zhao J, Wang A, Altermatt PP, Green MA (2014) High efficiency PERT cells on n-type silicon substrates. In: IEEE Photovoltaic Specialist Conference, Denver, Colorado, pp 3637–3640

  25. Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S (2014) Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovolt 4:1433–1435

    Google Scholar 

  26. Geissbuhler J, Werner J, De NS, Barraud L, Hessler-Wyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, De WS, Ballif C (2015) 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl Phys Lett 107:081601

    Google Scholar 

  27. Battaglia C, De Nicolas SM, De Wolf S, Yin X, Zheng M, Ballif C, Javey A (2014) Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl Phys Lett 104:113902

    Google Scholar 

  28. Woehl R, Krause J, Granek F, Biro D (2011) 19.7% efficient all-screen-printed back-contact back-junction silicon solar cell with aluminum-alloyed emitter. IEEE Electron Device Lett 32:345–347

    CAS  Google Scholar 

  29. Tomasi A, Paviet-Salomon B, Lachenal D, De Nicolas SM, Descoeudres A, Geissbuhler J, De Wolf S, Ballif C (2014) Back-contacted silicon heterojunction solar cells with efficiency > 21%. IEEE J Photovolt 4:1046–1054

    Google Scholar 

  30. Galbiati G, Mihailetchi VD, Roescu R, Halm A, Koduvelikulathu LJ, Kopecek R, Peter K, Libal J (2013) Large-area back-contact back-junction solar cell with efficiency exceeding 21%. IEEE J Photovolt 3:560–565

    Google Scholar 

  31. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    CAS  Google Scholar 

  32. Fuhrer MS, Lau CN, MacDonald AH (2010) Graphene: materially better carbon. MRS Bull 35:289–295

    CAS  Google Scholar 

  33. Munoz R, Gomez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Depos 19:297–322

    CAS  Google Scholar 

  34. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    CAS  Google Scholar 

  35. Song HS, Li SL, Miyazaki H, Sato S, Hayashi K, Yamada A, Yokoyama N, Tsukagoshi K (2012) Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Sci Rep 2:337

    CAS  Google Scholar 

  36. Feng H, Cheng R, Zhao X, Duan X, Li J (2013) A low-temperature method to produce highly reduced graphene oxide. Nat Commun 4:1539

    Google Scholar 

  37. Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    CAS  Google Scholar 

  38. Kim H, Horwitz JS, Kushto G, Pique A, Kafafi ZH, Gilmore CM, Chrisey DB (2000) Effect of film thickness on the properties of indium tin oxide thin films. J Appl Phys 88:6021

    CAS  Google Scholar 

  39. Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photon 6:749–758

    CAS  Google Scholar 

  40. Kwon KC, Choi KS, Kim SY (2012) Increased work function in few-layer graphene sheets via metal chloride doping. Adv Funct Mater 22:4724–4731

    CAS  Google Scholar 

  41. Hibino H, Kageshima H, Kotsugi M, Maeda F, Guo FZ, Watanabe Y (2009) Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys Rev B 79:125437

    Google Scholar 

  42. Ihm K, Lim JT, Lee KJ, Kwon JW, Kang TH, Chung S, Bae S, Kim JH, Hong BH, Yeom GY (2010) Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell. Appl Phys Lett 97:032113

    Google Scholar 

  43. Wu Y, Zhang X, Jie J, Xie C, Zhang X, Sun B, Wang Y, Gao P (2013) Graphene transparent conductive electrodes for highly efficient silicon nanostructures-based hybrid heterojunction solar cells. J Phys Chem C 117:11968–11976

    CAS  Google Scholar 

  44. Zhang X, Xie C, Jie J, Zhang X, Wua Y, Zhang W (2013) High-efficiency graphene/Si nanoarray Schottky junction solar cells via surface modification and graphene doping. J Mater Chem A 1:6593–6601

    CAS  Google Scholar 

  45. Xie C, Zhang X, Wu Y, Zhang X, Zhang X, Wang Y, Zhang W, Gao P, Hana Y, Jie J (2013) Surface passivation and band engineering: a way toward high efficiency graphene-planar Si solar cells. J Mater Chem A 1:8567–8574

    CAS  Google Scholar 

  46. De S, Coleman JN (2010) Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano 4:2713–2720

    CAS  Google Scholar 

  47. Park H, Chang S, Jean J, Cheng JJ, Araujo PT, Wang M, Bawendi MG, Dresselhaus MS, Bulovic V, Kong J, Gradecak S (2013) Graphene cathode-based ZnO nanowire hybrid solar cells. Nano Lett 13:233–239

    CAS  Google Scholar 

  48. Brida D, Tomadin A, Manzoni C, Kim YJ, Lombardo A, Milana S, Nair RR, Novoselov KS, Ferrari AC, Cerullo G, Polini M (2013) Ultrafast collinear scattering and carrier multiplication in graphene. Nat Commun 4:1987

    CAS  Google Scholar 

  49. Tielrooij KJ, Song JCW, Jensen SA, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov LS, Koppens FHL (2013) Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat Phys 9:248–252

    CAS  Google Scholar 

  50. Lee EJH, Balasubramanian K, Weitz RT, Burghard M, Kern K (2008) Contact and edge effects in graphene devices. Nat Nanotechnol 3:486–490

    CAS  Google Scholar 

  51. Park J, Ahn YH, Ruiz-Vargas C (2009) Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett 9:1742–1746

    CAS  Google Scholar 

  52. Toyama N (1988) Variation in the effective Richardson constant of a metal-silicon contact due to metal film thickness. J Appl Phys 63:2720

    CAS  Google Scholar 

  53. Roccaforte F, La Via F, Raineri V, Pierobon R, Zanoni E (2003) Richardson’s constant in inhomogeneous silicon carbide Schottky contacts. J Appl Phys 93:9137–9144

    CAS  Google Scholar 

  54. Sarpatwari K, Mohney SE, Awadelkarim OO (2011) Effects of barrier height inhomogeneities on the determination of the Richardson constant. J Appl Phys 109:014510

    Google Scholar 

  55. Arefinia Z, Asgari A (2015) An analytical model for optimizing the performance of graphene based silicon Schottky barrier solar cells. Mater Sci Semicond Process 35:181–188

    CAS  Google Scholar 

  56. Lee TC, Chen TP, Au HL, Fung S, Beling CD (1993) The effect of the temperature dependence of the ideality factor on metal-semiconductor solar devices. Semicond Sci Technol 8:1357–1360

    CAS  Google Scholar 

  57. Tongay S, Schumann T, Hebard AF (2009) Graphite based Schottky diodes formed on Si, GaAs, and 4H–SiC substrates. Appl Phys Lett 95:222103

    Google Scholar 

  58. Chen C, Aykol M, Chang CC, Levi AFJ, Cronin SB (2011) Graphene-silicon Schottky diodes. Nano Lett 11:1863–1867

    CAS  Google Scholar 

  59. Sinha D, Lee JU (2014) Ideal graphene/silicon Schottky junction diodes. Nano Lett 14:4660–4664

    CAS  Google Scholar 

  60. Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22:2743–2748

    CAS  Google Scholar 

  61. Bai X, Wang H, Wei J, Jia Y, Zhu H, Wang K, Wu D (2012) Carbon nanotube-silicon hybrid solar cells with hydrogen peroxide doping. Chem Phys Lett 533:70–73

    CAS  Google Scholar 

  62. Li X, Jung Y, Sakimoto K, Goh TH, Reed MA, Taylor AD (2013) Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci 6:879–887

    CAS  Google Scholar 

  63. Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells. Nano Lett 13:95–99

    CAS  Google Scholar 

  64. Xu W, Deng B, Shi E, Wu S, Zou M, Yang L, Wei J, Peng H, Cao A (2015) Comparison of nanocarbon-silicon solar cells with nanotube-Si or graphene-Si contact. ACS Appl Mater Interfaces 7:17088–17094

    CAS  Google Scholar 

  65. Suhail A, Pan G, Jenkins D, Islam K (2018) Improving efficiency of graphene/Si Schottky junction solar cell based on back contact structure and DUV treatment. Carbon 129:520–526

    CAS  Google Scholar 

  66. Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015) Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Commun 6:6305

    CAS  Google Scholar 

  67. Shi E, Zhang L, Li Z, Li P, Shang Y, Jia Y, Wei J, Wang K, Zhu H, Wu D, Zhang S, Cao A (2012) TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep 2:884

    Google Scholar 

  68. Kim JM, Kim S, Shin DH, Seo SW, Lee HS, Kim JH, Jang CW, Kang SS, Choi SH, Kwak GY, Kim KJ, Lee H, Lee H (2018) Si-quantum-dot heterojunction solar cells with 16.2% efficiency achieved by employing doped-graphene transparent conductive electrodes. Nano Energy 43:124–129

    CAS  Google Scholar 

  69. Ma J, Bai H, Zhao W, Yuan Y, Zhang K (2018) High efficiency graphene/MoS2/Si Schottky barrier solar cells using layer-controlled MoS2 films. Sol Energy 160:76–84

    CAS  Google Scholar 

  70. Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H, Kong J (2015) Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. Nano Lett 15:2104–2110

    CAS  Google Scholar 

  71. Shi E, Li H, Xu W, Wu S, Wei J, Fang Y, Cao A (2015) Improvement of graphene-Si solar cells by embroidering graphene with a carbon nanotube spider-web. Nano Energy 17:216–223

    CAS  Google Scholar 

  72. Shi E, Li H, Yang L, Zhang L, Li Z, Li P, Shang Y, Wu S, Li X, Wei J, Wang K, Zhu H, Wu D, Fang Y, Cao A (2013) Colloidal antireflection coating improves graphene-silicon solar cells. Nano Lett 13:1776–1781

    CAS  Google Scholar 

  73. Xu D, He J, Yu X, Gao D, Ma L, Mu X, Zhong M, Xu Y, Ye J, Xu M, Yang D (2017) Illumination-induced hole doping for performance improvement of graphene/n-silicon solar cells with P3HT interlayer. Adv Electron Mater 3:1600516

    Google Scholar 

  74. Diao S, Zhang X, Shao Z, Ding K, Jie J, Zhang X (2017) 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy 31:359–366

    CAS  Google Scholar 

  75. Jiao K, Wang X, Wang Y, Chen Y (2014) Graphene oxide as an effective interfacial layer for enhanced graphene/silicon solar cell performance. J Mater Chem C 2:7715–7721

    CAS  Google Scholar 

  76. Ho PH, Liou YT, Chuang CH, Lin SW, Tseng CY, Wang DY, Chen CC, Hung WY, Wen CY, Chen CW (2015) Self-crack-filled graphene films by metallic nanoparticles for high-performance graphene heterojunction solar cells. Adv Mater 27:1724–1729

    CAS  Google Scholar 

  77. Tsuboi Y, Wang F, Kozawa D, Funahashi K, Mouri S, Miyauchi Y, Takenobu T, Matsuda K (2015) Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS2 thin film. Nanoscale 7:14476–14482

    CAS  Google Scholar 

  78. Meng JH, Liu X, Zhang XW, Zhang Y, Wang HL, Yin ZG, Zhang YZ, Liu H, You JB, Yan H (2016) Interface engineering for highly efficient graphene-on-silicon Schottky junction solar cells by introducing a hexagonal boron nitride interlayer. Nano Energy 28:44–50

    CAS  Google Scholar 

  79. Yavuz S, Kuru C, Choi D, Kargar A, Jin S, Bandaru PR (2016) Graphene oxide as a p-dopant and an anti-reflection coating layer, in graphene/silicon solar cells. Nanoscale 8:6473–6478

    CAS  Google Scholar 

  80. Xie C, Zhang X, Ruan K, Shao Z, Dhaliwal SS, Wang L, Zhang Q, Zhang X, Jie J (2013) High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. J Mater Chem A 1:15348–15354

    CAS  Google Scholar 

  81. Liu X, Zhang XW, Meng JH, Yin ZG, Zhang LQ, Wang HL, Wu JL (2015) High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid. Appl Phys Lett 106:233901

    Google Scholar 

  82. Li X, Xie D, Park H, Zeng TH, Wang K, Wei J, Zhong M, Wu D, Kong J, Zhu H (2013) Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells. Adv Energy Mater 3:1029–1034

    CAS  Google Scholar 

  83. Li X, Xie D, Park H, Zhu M, Zeng TH, Wang K, Wei J, Wu D, Kong J, Zhu H (2013) Ion doping of graphene for high-efficiency heterojunction solar cells. Nanoscale 5:1945–1948

    CAS  Google Scholar 

  84. Chen L, Yu H, Zhong J, He H, Zhang T (2015) Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell. Electrochim Acta 178:732–738

    CAS  Google Scholar 

  85. Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745–2750

    CAS  Google Scholar 

  86. Lancellotti L, Bobeico E, Capasso A, Lago E, Delli Veneri P, Leoni E, Buonocore F, Lisi N (2016) Combined effect of double antireflection coating and reversible molecular doping on performance of few-layer graphene/n-silicon Schottky barrier solar cells. Sol Energy 127:198–205

    CAS  Google Scholar 

  87. Ruan K, Ding K, Wang Y, Diao S, Shao Z, Zhang X, Jie J (2015) Flexible graphene/silicon heterojunction solar cells. J Mater Chem A 3:14370–14377

    CAS  Google Scholar 

  88. Lin Y, Li X, Xie D, Feng T, Chen Y, Song R, Tian H, Ren T, Zhong M, Wang K, Zhu H (2013) Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ Sci 6:108–115

    CAS  Google Scholar 

  89. An X, Liu F, Kar S (2013) Optimizing performance parameters of graphene-silicon and thin transparent graphite-silicon heterojunction solar cells. Carbon 57:329–337

    CAS  Google Scholar 

  90. Ahn J, Chou H, Banerjee SK (2017) Graphene-Al2O3-silicon heterojunction solar cells on flexible silicon substrates. J Appl Phys 121:163105

    Google Scholar 

  91. Liu X, Zhang XW, Yin ZG, Meng JH, Gao HL, Zhang LQ, Zhao YJ, Wang HL (2014) Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles. Appl Phys Lett 105:183901

    Google Scholar 

  92. Bhopal MF, Akbar K, Abdul Rehman M, Lee DW, Ur Rehman A, Seo Y, Chun SH, Lee SH (2017) High-K dielectric oxide as an interfacial layer with enhanced photo-generation for Gr/Si solar cells. Carbon 125:56–62

    CAS  Google Scholar 

  93. Cui T, Lv R, Huang Z, Chen S, Zhang Z, Gan X, Jia Y, Li X, Wang K, Wua D, Kang F (2013) Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. J Mater Chem A 1:5736–5740

    CAS  Google Scholar 

  94. Shin DH, Jang CW, Lee HS, Seo SW, Kim S, Choi SH (2018) Graphene/Si solar cells employing triethylenetetramine dopant and polymethylmethacrylate antireflection layer. Appl Surf Sci 433:181–187

    CAS  Google Scholar 

  95. Liu J, Sun W, Wei D, Song X, Jiao T, He S, Zhang W, Du C (2015) Direct growth of graphene nanowalls on the crystalline silicon for solar cells. Appl Phys Lett 106:043904

    Google Scholar 

  96. Feng T, Xie D, Lin Y, Zhao H, Chen Y, Tian H, Ren T, Li X, Li Z, Wang K, Wub D, Zhu H (2012) Efficiency enhancement of graphene/silicon-pillar-array solar cells by HNO3 and PEDOT-PSS. Nanoscale 4:2130–2133

    CAS  Google Scholar 

  97. Feng T, Xie D, Lin Y, Zang Y, Ren T, Song R, Zhao H, Tian H, Li X, Zhu H, Liu L (2011) Graphene based Schottky junction solar cells on patterned silicon-pillar array substrate. Appl Phys Lett 99:233505

    Google Scholar 

  98. Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H (2012) Boron doping of graphene for graphene-silicon p-n junction solar cells. Adv Energy Mater 2:425–429

    CAS  Google Scholar 

  99. Fan G, Zhu H, Wang K, Wei J, Li X, Shu Q, Guo N, Wu D (2011) Graphene/silicon nanowire Schottky junction for enhanced light harvesting. ACS Appl Mater Interfaces 3:721–725

    CAS  Google Scholar 

  100. Chen SM, Gao M, Fang XH, Ma ZQ (2015) Modifications and multiple roles of graphene film in SIS structural solar cells. Sol Energy 122:658–666

    CAS  Google Scholar 

  101. Xie C, Lv P, Nie B, Jie J, Zhang X, Wang Z, Jiang P, Hu Z, Luo L, Zhu Z, Wang L, Wu C (2011) Monolayer graphene film/silicon nanowire array Schottky junction solar cells. Appl Phys Lett 99:133113

    Google Scholar 

  102. Li YF, Yang W, Tu ZQ, Liu ZC, Yang F, Zhang LQ, Hatakeyama R (2014) Schottky junction solar cells based on graphene with different numbers of layers. Appl Phys Lett 104:043903

    Google Scholar 

  103. Crowther AC, Ghassaei A, Jung N, Brus LE (2012) Strong charge-transfer doping of 1 to 10 layer graphene by NO2. ACS Nano 6:1865–1875

    CAS  Google Scholar 

  104. Tongay S, Schumann T, Miao X, Appleton BR, Hebard AF (2011) Tuning Schottky diodes at the many-layer-graphene/semiconductor interface by doping. Carbon 49:2033–2038

    CAS  Google Scholar 

  105. Tongay S, Berke K, Lemaitre M, Nasrollahi Z, Tanner DB, Hebard AF, Appleton BR (2011) Stable hole doping of graphene for low electrical resistance and high optical transparency. Nanotechnology 22:425701

    CAS  Google Scholar 

  106. Shi Y, Kim KK, Reina A, Hofmann M, Li L, Kong J (2010) Work function engineering of graphene electrode via chemical doping. ACS Nano 4:2689–2694

    CAS  Google Scholar 

  107. Kim KK, Reina A, Shi Y, Park H, Li LJ, Lee YH, Kong J (2010) Enhancing the conductivity of transparent graphene films via doping. Nanotechnology 21:285205

    Google Scholar 

  108. Wang L, Sofer Z, Simek P, Tomandl I, Pumera M (2013) Boron-doped graphene: scalable and tunable p-type carrier concentration doping. J Phys Chem C 117:23251–23257

    CAS  Google Scholar 

  109. Fan X, Shen Z, Liu AQ, Kuo JL (2012) Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4:2157–2165

    CAS  Google Scholar 

  110. Rani P, Jindal VK (2013) Designing band gap of graphene by B and N dopant atoms. RSC Adv 3:802–812

    CAS  Google Scholar 

  111. Escoffier W, Poumirol J, Yang R, Goiran M, Raquet B, Broto J (2010) Electric field doping of few-layer graphene. Phys B 405:1163–1167

    CAS  Google Scholar 

  112. Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, Kim P (2009) Tuning the graphene work function by electric field effect. Nano Lett 9:3430–3434

    CAS  Google Scholar 

  113. Yu X, Yang L, Lv Q, Xu M, Chen H, Yang D (2015) The enhanced efficiency of graphene-silicon solar cells by electric field doping. Nanoscale 7:7072–7077

    CAS  Google Scholar 

  114. Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692

    CAS  Google Scholar 

  115. Lee D, Lee H, Ahn Y, Jeong Y, Lee DY, Lee Y (2013) Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices. Nanoscale 5:7750–7755

    CAS  Google Scholar 

  116. Guo CF, Ren Z (2015) Flexible transparent conductors based on metal nanowire networks. Mater Today 18:143–154

    CAS  Google Scholar 

  117. Sepulveda-Mora SB, Cloutier SG (2012) Figures of merit for high-performance transparent electrodes using dip-coated silver nanowire networks. J Nanomater 2012:286104

    Google Scholar 

  118. Yang L, Yu X, Hu W, Wu X, Zhao Y, Yang D (2015) An 8.68% Efficiency chemically-doped-free graphene-silicon solar cell using silver nanowires network buried contacts. ACS Appl Mater Interfaces 7:4135–4141

    CAS  Google Scholar 

  119. Kim JM, Seo SW, Shin DH, Lee HS, Kim JH, Jang CW, Kim S, Choi SH (2017) Ag-nanowires-doped graphene/Si Schottky-junction solar cells encapsulated with another graphene layer. Curr Appl Phys 17:1136–1141

    Google Scholar 

  120. Shivaraman S, Herman LH, Rana F, Park J, Spencer MG (2012) Schottky barrier inhomogeneities at the interface of few layer epitaxial graphene and silicon carbide. Appl Phys Lett 100:183112

    Google Scholar 

  121. Park NW, Lee WY, Lee SK, Kim DJ, Kim GS, Hyung JH, Hong CH, Koh JH, Kim KS (2015) Electrical transport measurements and degradation of graphene/n-Si Schottky junction diodes. J Korean Phys Soc 66:22–26

    CAS  Google Scholar 

  122. Wang X, Li D, Zhang Q, Zou L, Wang F, Zhou J, Zhang Z (2015) Study on the graphene/silicon Schottky diodes by transferring graphene transparent electrodes on silicon. Thin Solid Films 592:281–286

    CAS  Google Scholar 

  123. Lin YJ, Lin JH (2014) Annealing effect on Schottky barrier inhomogeneity of graphene/n-type Si Schottky diodes. Appl Surf Sci 311:224–229

    CAS  Google Scholar 

  124. Ponpon JP, Siffert P (1976) Open-circuit voltage of MIS silicon solar cells. J Appl Phys 47:3248–3251

    CAS  Google Scholar 

  125. Baek SC, Seo YJ, Oh JG, Park MGA, Bong JH, Yoon SJ, Seo M, Park S, Park BG, Lee SH (2014) Alleviation of fermi-level pinning effect at metal/germanium interface by the insertion of graphene layers. Appl Phys Lett 105:073508

    Google Scholar 

  126. Khurelbaatar Z, Kil YH, Yun HJ, Shim KH, Nam JT, Kim KS, Lee SK, Choi CJ (2014) Modification of Schottky barrier properties of Au/n-type Ge Schottky barrier diode using monolayer graphene interlayer. J Alloy Compd 614:323–329

    CAS  Google Scholar 

  127. Brus VV, Gluba MA, Zhang X, Hinrichs K, Rappich J, Nickel NH (2014) Temperature and light dependent electrical properties of Graphene/n-Si–CH3-terminated solar cells. Sol Energy 107:74–81

    CAS  Google Scholar 

  128. Aberle AG (2000) Surface passivation of crystalline silicon solar cells: a review. Prog Photovolt: Res Appl 8:362–376

    Google Scholar 

  129. Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energy Mater Sol Cells 92:1305–1310

    CAS  Google Scholar 

  130. Schmidt J, Kerr M, Cuevas A (2001) Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks. Semicond Sci Technol 16:164–170

    CAS  Google Scholar 

  131. Li H, Hallam B, Wenham SR (2011) Comparative study of PECVD deposited a-Si:H/SiNx:H double passivating layer on CZ crystalline Si substrate. In: IEEE photovoltaic specifications conference, Seattle, Washington, pp 1481–1485

  132. Green MA (2002) Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions. Prog Photovolt: Res Appl 10:235–241

    CAS  Google Scholar 

  133. Basore PA (1990) Numerical modeling of textured silicon solar cells using PC-1D. IEEE Trans Electron Dev 37:337–343

    CAS  Google Scholar 

  134. Rand A, Basore PA (1991) Light-trapping silicon solar cells-experimental results and analysis. In: IEEE Photovoltaic Specifications Conference, Las Vegas, Nevada, pp. 192–197

  135. Saha H, Datta SK, Mukhopadhyay K, Banerjee S (1992) Influence of surface texturization on the light trapping and spectral response of silicon solar cells. IEEE Trans Electron Dev 39:1100–1107

    CAS  Google Scholar 

  136. Abdullah MF, Alghoul MA, Naser H, Asim N, Ahmadi S, Yatim B, Sopian K (2016) Research and development efforts on texturization to reduce the optical losses at front surface of silicon solar cell. Renew Sustain Energy Rev 66:380–398

    CAS  Google Scholar 

  137. Zubel I, Kramkowska M (2004) Etch rates and morphology of silicon (hkl) surfaces etched in KOH and KOH saturated with isopropanol solutions. Sens Actuators, A 115:549–556

    CAS  Google Scholar 

  138. Fukui K, Inomata Y, Shirasawa K (1997) Surface texturing using reactive ion etching for multicrystalline silicon solar cells. IEEE Photvolt Specif Conf, Anaheim, pp 47–50

    Google Scholar 

  139. Vallejo B, Gonzalez-Manas M, Martinez-Lopez J, Caballero MA (2007) On the texturization of monocrystalline silicon with sodium carbonate solutions. Sol Energy 81:565–569

    CAS  Google Scholar 

  140. Zubel I, Kramkowska M (2001) The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions. Sens Actuators, A 93:138–147

    CAS  Google Scholar 

  141. Vazsonyi E, De Clercq K, Einhaus R, Van Kerschaver E, Said K, Poortmans J, Szlufcik J, Nijs J (1999) Improved anisotropic etching process for industrial texturing of silicon solar cells. Sol Energy Mater Sol Cells 57:179–188

    CAS  Google Scholar 

  142. Prasad B, Bhattacharya S, Saxena AK, Reddy SR, Bhogra RK (2010) Performance enhancement of mc-Si solar cells due to synergetic effect of plasma texturization and SiNx: H AR coating. Sol Energy Mater Sol Cells 94:1329–1332

    CAS  Google Scholar 

  143. Zielke D, Sylla D, Neubert T, Brendel R, Schmidt J (2012) Direct laser texturing for high-efficiency silicon solar cells. IEEE J Photovolt 3:656–661

    Google Scholar 

  144. Repo P, Benick J, Vahanissi V, Schon J, Von Gastrow G, Steinhauser B, Schubert MC, Hermle M, Savin H (2013) N-type black silicon solar cells. Energy Proc 38:866–871

    CAS  Google Scholar 

  145. Chen CH, Juan PC, Liao MH, Tsai JL, Hwang HL (2011) The effect of surface treatment on omni-directional efficiency of the silicon solar cells with micro-spherical texture/ITO stacks. Sol Energy Mater Sol Cells 95:2545–2548

    CAS  Google Scholar 

  146. Kohata H, Saito Y (2010) Maskless texturization of phosphorus-diffused layers for crystalline Si solar cells by plasmaless dry etching with chlorine trifluoride gas. Sol Energy Mater Sol Cells 94:2124–2128

    CAS  Google Scholar 

  147. Basu PK, Sarangi D, Boreland MB (2013) Single-component damage-etch process for improved texturization of monocrystalline silicon wafer solar cells. IEEE J Photovolt 3:1222–1228

    Google Scholar 

  148. Edwards M, Bowden S, Das U, Burrows M (2008) Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells. Sol Energy Mater Sol Cells 92:1373–1377

    CAS  Google Scholar 

  149. Marrero N, Guerrero-Lemus R, Gonzalez-Diaz B, Borchert D (2009) Effect of porous silicon stain etched on large area alkaline textured crystalline silicon solar cells. Thin Solid Films 517:2648–2650

    CAS  Google Scholar 

  150. Dou B, Jia R, Li H, Chen C, Ding W, Meng Y, Liu X, Ye T (2013) Rear surface protection and front surface bi-layer passivation for silicon nanostructure-textured solar cells. J Phys D Appl Phys 46:025101

    Google Scholar 

  151. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087

    CAS  Google Scholar 

  152. He L, Jiang C, Wang H, Lai D, Tan YH, Tan CS, Rusli (2012) Effects of nanowire texturing on the performance of Si/organic hybrid solar cells fabricated with a 2.2 m thin film Si absorber. Appl Phys Lett 100:103104

    Google Scholar 

  153. Xie C, Jie J, Nie B, Yan T, Li Q, Lv P, Li F, Wang M, Wu C, Wang L, Luo L (2012) Schottky solar cells based on graphene nanoribbon/multiple silicon nanowires junctions. Appl Phys Lett 100:193103

    Google Scholar 

  154. Muskens OL, Rivas JG, Algra RE, Bakkers EPAM, Lagendijk A (2008) Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett 8:2638–2642

    CAS  Google Scholar 

  155. Llopis F, Tobias I (2005) Influence of texture feature size on the optical performance of silicon solar cells. Prog Photovolt: Res Appl 13:27–36

    CAS  Google Scholar 

  156. Sai H, Kanamori Y, Arafune K, Ohshita Y, Yamaguchi M (2007) Light trapping effect of submicron surface textures in crystalline Si solar cells. Prog Photovolt: Res Appl 15:415–423

    Google Scholar 

  157. Kumar R, Sharma AK, Bhatnagar M, Mehta BR, Rath S (2013) Antireflection properties of graphene layers on planar and textured silicon surfaces. Nanotechnology 24:165402

    Google Scholar 

  158. Li R, Di J, Yong Z, Sun B, Li Q (2014) Polymethylmethacrylate coating on aligned carbon nanotube-silicon solar cells for performance improvement. J Mater Chem A 2:4140–4143

    CAS  Google Scholar 

  159. Lancellotti L, Bobeico E, Castaldo A, Veneri PD, Lago E, Lisi N (2018) Effects of different graphene dopants on double antireflection coatings/graphene/n-silicon heterojunction solar cells. Thin Solid Films 646:21–27

    CAS  Google Scholar 

  160. Luo LB, Zeng LH, Xie C, Yu YQ, Liang FX, Wu CY, Wang L, Hu JG (2014) Light trapping and surface plasmon enhanced high-performance NIR photodetector. Sci Rep 4:3914

    Google Scholar 

  161. Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16:21793–21800

    CAS  Google Scholar 

  162. Pudasaini PR, Ayon AA (2013) Modeling the front side plasmonics effect in nanotextured silicon surface for thin film solar cells application. Microsyst Technol 19:871–877

    CAS  Google Scholar 

  163. Akimov YA, Koh WS, Ostrikov K (2009) Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt Express 17:10195–10205

    CAS  Google Scholar 

  164. Lin C, Povinelli ML (2010) The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays. Appl Phys Lett 97:071110

    Google Scholar 

  165. Sardana SK, Chava VSN, Thouti E, Chander N, Kumar S, Reddy SR, Komarala VK (2014) Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell. Appl Phys Lett 104:073903

    Google Scholar 

  166. Chen X, Jia B, Zhang Y, Gu M (2013) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light Sci Appl 2:e92

    Google Scholar 

  167. Cartier E, Stathis JH, Buchanan DA (1993) Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen. Appl Phys Lett 63:1510–1512

    CAS  Google Scholar 

  168. Jeong DY, Kim CS, Song JY, Lee JC, Cho JS, Park SH, Wang JS, Yoon KH, Song J (2009) Effect of texture morphology on the surface passivation and a-Si/c-Si heterojunction solar cells. In: IEEE photovoltaic specifications conferences, Philadelphia, Pennsylvania, pp 642–645

  169. Holman ZC, Filipic M, Lipovsek B, De Wolf S, Smole F, Topic M, Ballif C (2014) Parasitic absorption in the rear reflector of a silicon solar cell: simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors. Sol Energy Mater Sol Cells 120:426–430

    CAS  Google Scholar 

  170. Echtermeyer TJ, Britnell L, Jasnos PK, Lombardo A, Gorbachev RV, Grigorenko AN, Geim AK, Ferrari AC, Novoselov KS (2011) Strong plasmonic enhancement of photovoltage in graphene. Nat Commun 2:458

    CAS  Google Scholar 

  171. Oh J, Yuan HC, Branz HM (2012) An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat Nanotechnol 7:743–748

    CAS  Google Scholar 

  172. Bozzola A, Kowalczewski P, Andreani LC (2014) Towards high efficiency thin-film crystalline silicon solar cells: the roles of light trapping and non radiative recombinations. J Appl Phys 115:094501

    Google Scholar 

  173. Dingemans G, Kessels WMM (2012) Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. J Vac Sci Technol A 30:040802

    Google Scholar 

  174. Alderman N, Danos L, Grossel MC, Markvart T (2012) Large surface photovoltages observed at methyl-terminated silicon surfaces synthesised through a two-step chlorination-alkylation method. RSC Adv 2:7669–7672

    CAS  Google Scholar 

  175. Sopori B, Rupnowski P, Appel J, Mehta V, Li C, Johnston S (2008) Wafer preparation and iodine-ethanol passivation procedure for reproducible minority-carrier lifetime measurement. In: IEEE photovoltaic specifications conference, San Diego, California, pp 1–4

  176. Chhabra B, Bowden S, Opila RL, Honsberg CB (2010) High effective minority carrier lifetime on silicon substrates using quinhydrone-methanol passivation. Appl Phys Lett 96:063502

    Google Scholar 

  177. Chen J, Zhao L, Diao H, Yan B, Zhou S, Tang Y, Wang W (2013) Surface passivation of silicon wafers by iodine-ethanol (I-E) for minority carrier lifetime measurements. Adv Mater Res 652–654:901–905

    Google Scholar 

  178. Haick H, Hurley PT, Hochbaum AI, Yang P, Lewis NS (2006) Electrical characteristics and chemical stability of non-oxidized, methyl-terminated silicon nanowires. J Am Chem Soc 128:8990–8991

    CAS  Google Scholar 

  179. Sieval AB, Huisman CL, Schonecker A, Schuurmans FM, Van Der Heide ASH, Goossens A, Sinke WC, Zuilhof H, Sudholter EJR (2003) Silicon surface passivation by organic monolayers: minority charge carrier lifetime measurements and Kelvin probe investigations. J Phys Chem B 107:6846–6852

    CAS  Google Scholar 

  180. Brus VV, Gluba MA, Zhang X, Hinrichs K, Rappich J, Nickel NH (2014) Stability of graphene-silicon heterostructure solar cells. Phys Stat Solidi A 211:843–847

    CAS  Google Scholar 

  181. Bashouti MY, Paska Y, Puniredd SR, Stelzner T, Christiansen S, Haick H (2009) Silicon nanowires terminated with methyl functionalities exhibit stronger Si–C bonds than equivalent 2D surfaces. Phys Chem Chem Phys 11:3845–3848

    CAS  Google Scholar 

  182. Hunger R, Chr P, Scheer R (2002) Dipole formation and band alignment at the Si(111)/CuInS2 heterojunction. J Appl Phys 91:6560–6570

    CAS  Google Scholar 

  183. Hunger R, Fritsche R, Jaeckel B, Jaegermann W (2005) Chemical and electronic characterization of methyl-terminated Si(111) surfaces by high-resolution synchrotron photoelectron spectroscopy. Phys Rev B 72:045317

    Google Scholar 

  184. Maldonado S, Plass KE, Knapp D, Lewis NS (2007) Electrical properties of junctions between Hg and Si (111) surfaces functionalized with short-chain alkyls. J Phys Chem C 111:17690–17699

    CAS  Google Scholar 

  185. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    CAS  Google Scholar 

  186. Hsu WT, Tsai ZS, Chen LC, Chen GY, Lin CC, Chen MH, Song JM, Lin CH (2014) Passivation ability of graphene oxide demonstrated by two-different-metal solar cells. Nanoscale Res Lett 9:696

    Google Scholar 

  187. Lin CH, Yeh WT, Chen MH (2014) Metal-insulator-semiconductor photodetectors with different coverage ratios of graphene oxide. IEEE J Sel Top Quantum Electron 20:3800105

    Google Scholar 

  188. Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174

    CAS  Google Scholar 

  189. Yang L, Yu X, Xu M, Chen H, Yang D (2014) Interface engineering for efficient and stable chemical-doping-free graphene-on-silicon solar cells by introducing a graphene oxide interlayer. J Mater Chem A 2:16877–16883

    CAS  Google Scholar 

  190. Jeon YJ, Yun JM, Kim DY, Na SI, Kim SS (2014) Moderately reduced graphene oxide as hole transport layer in polymer solar cells via thermal assisted spray process. Appl Surf Sci 296:140–146

    CAS  Google Scholar 

  191. Yeh TF, Chan FF, Hsieh CT, Teng H (2011) Graphite oxide with different oxygenated levels for hydrogen and oxygen production from water under illumination: the band positions of graphite oxide. J Phys Chem C 115:22587–22597

    CAS  Google Scholar 

  192. Yang D, Zhou L, Chen L, Zhao B, Zhang J, Li C (2012) Chemically modified graphene oxides as a hole transport layer in organic solar cells. Chem Commun 48:8078–8080

    CAS  Google Scholar 

  193. Uma K, Subramani T, Syu HJ, Lin TC, Lin CF (2015) Fabrication of silicon nanowire/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate)-graphene oxide hybrid solar cells. J Appl Phys 117:105102

    Google Scholar 

  194. Girotto C, Voroshazi E, Cheyns D, Heremans P, Rand BP (2011) Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS Appl Mater Inter 3:3244–3247

    CAS  Google Scholar 

  195. Chambon S, Derue L, Lahaye M, Pavageau B, Hirsch L, Wantz G (2012) MoO3 thickness, thermal annealing and solvent annealing effects on inverted and direct polymer photovoltaic solar cells. Materials 5:2521–2536

    CAS  Google Scholar 

  196. Wang G, Jiu T, Li P, Li J, Sun C, Lu F, Fang J (2014) Preparation and characterization of MoO3 hole-injection layer for organic solar cell fabrication and optimization. Sol Energy Mater Sol Cells 120:603–609

    CAS  Google Scholar 

  197. Bullock J, Cuevas A, Allen T, Battaglia C (2014) Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl Phys Lett 105:232109

    Google Scholar 

  198. Battaglia C, Yin X, Zheng M, Sharp ID, Chen T, McDonnell S, Azcatl A, Carraro C, Ma B, Maboudian R, Wallace RM, Javey A (2014) Hole selective MoOx contact for silicon solar cells. Nano Lett 14:967–971

    CAS  Google Scholar 

  199. Jiao K, Duan C, Wu X, Chen J, Wang Y, Chen Y (2015) The role of MoS2 as an interfacial layer in graphene/silicon solar cells. Phys Chem Chem Phys 17:8182–8186

    CAS  Google Scholar 

  200. Fontana M, Deppe T, Boyd AK, Rinzan M, Liu AY, Paranjape M, Barbara P (2013) Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci Rep 3:1634

    Google Scholar 

  201. Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13:3664–3670

    CAS  Google Scholar 

  202. Yim C, O’Brien M, McEvoy N, Riazimehr S, Schafer-Eberwein H, Bablich A, Pawar R, Iannaccone G, Downing C, Fiori G, Lemme MC, Duesberg GS (2014) Heterojunction hybrid devices from vapor phase grown MoS2. Sci Rep 4:5458

    CAS  Google Scholar 

  203. Reese O, Morfa AJ, White MS, Kopidakis N, Shaheen SE, Rumbles G, Ginley DS (2008) Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices. Sol Energy Mater Sol Cells 92:746–752

    CAS  Google Scholar 

  204. Manceau M, Rivaton A, Gardette JL, Guillerez S, Lemaitre N (2011) Light-induced degradation of the P3HT-based solar cells active layer. Sol Energy Mater Sol Cells 95:1315–1325

    CAS  Google Scholar 

  205. Singh E, Nalwa HS (2015) Stability of graphene-based heterojunction solar cells. RSC Adv 5:73575–73600

    CAS  Google Scholar 

  206. Jia Y, Li P, Gui X, Wei J, Wang K, Zhu H, Wu D, Zhang L, Cao A, Xu Y (2011) Encapsulated carbon nanotube-oxide-silicon solar cells with stable 10% efficiency. Appl Phys Lett 98:133115

    Google Scholar 

  207. Li X, Zang X, Li X, Zhu M, Chen Q, Wang K, Zhong M, Wei J, Wu D, Zhu H (2014) Hybrid heterojunction and solid-state photoelectrochemical solar cells. Adv Energy Mater 4:1400224

    Google Scholar 

  208. Jia Y, Cao A, Bai X, Li Z, Zhang L, Guo N, Wei J, Wang K, Zhu H, Wu D, Ajayan PM (2011) Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett 11:1901–1905

    CAS  Google Scholar 

  209. Zhang W, Lin CT, Liu KK, Tite T, Su CY, Chang CH, Lee YH, Chu CW, Wei KH, Kuo JL, Li LJ (2011) Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano 5:7517–7524

    CAS  Google Scholar 

  210. Ryu S, Liu L, Berciaud S, Yu YJ, Liu H, Kim P, Flynn GW, Brus LE (2010) Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett 10:4944–4951

    CAS  Google Scholar 

  211. Suk JW, Lee WH, Lee J, Chou H, Piner RD, Hao Y, Akinwande D, Ruoff RS (2013) Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett 13:1462–1467

    CAS  Google Scholar 

  212. Bunch JS, Verbridge SS, Alden JS, Van Der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8:2458–2462

    CAS  Google Scholar 

  213. Tongay S, Lemaitre M, Schumann T, Berke K, Appleton BR, Gila B, Hebard AF (2011) Graphene/GaN Schottky diodes: stability at elevated temperatures. Appl Phys Lett 99:102102

    Google Scholar 

  214. Kim DJ, Kim GS, Park NW, Lee WY, Sim Y, Kim KS, Seong MJ, Koh JH, Hong CH, Lee SK (2014) Effect of annealing of graphene layer on electrical transport and degradation of Au/graphene/n-type silicon Schottky diodes. J Alloy Compd 612:265–272

    CAS  Google Scholar 

  215. Hellstrom SL, Vosgueritchian M, Stoltenberg RM, Irfan I, Hammock M, Wang YB, Jia C, Guo X, Gao Y, Bao Z (2012) Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett 12:3574–3580

    CAS  Google Scholar 

  216. Yu L, Tune DD, Shearer CJ, Shapter JG (2015) Implementation of antireflection layers for improved efficiency of carbon nanotube-silicon heterojunction solar cells. Sol Energy 118:592–599

    CAS  Google Scholar 

  217. Yu L, Tune D, Shearer C, Shapter J (2015) Heterojunction solar cells based on silicon and composite films of graphene oxide and carbon nanotubes. Chemsuschem 8:2940–2947

    CAS  Google Scholar 

  218. Tian Y, Wang F, Liu Y, Pang F, Zhang X (2014) Green synthesis of silver nanoparticles on nitrogen-doped graphene for hydrogen peroxide detection. Electrochim Acta 146:646–653

    CAS  Google Scholar 

  219. Tran MH, Jeong HK (2015) Synthesis and characterization of silver nanoparticles doped reduced graphene oxide. Chem Phys Lett 630:80–85

    CAS  Google Scholar 

  220. Dao VD, Jung SH, Kim JS, Tran QC, Chong SA, Larina LL, Choi HS (2015) AuNP/graphene nanohybrid prepared by dry plasma reduction as a low-cost counter electrode material for dye-sensitized solar cells. Electrochim Acta 156:138–146

    CAS  Google Scholar 

  221. Han M, Ryu BD, Hyung JH, Han N, Park YJ, Ko KB, Kang KK, Cuong TV, Hong CH (2017) Enhanced thermal stability of reduced graphene oxide-Silicon Schottky heterojunction solar cells via nitrogen doping. Mater Sci Semicond Process 59:45–49

    CAS  Google Scholar 

  222. Lee WC, Tsai ML, Chen YL, Tu WC (2017) Fabrication and analysis of chemically-derived graphene/pyramidal si heterojunction solar cells. Sci Rep 7:46478

    CAS  Google Scholar 

  223. Nandi A, Majumdar S, Datta SK, Saha H, Hossain SM (2017) Optical and electrical effects of thin reduced graphene oxide layers on textured wafer-based c-Si solar cells for enhanced performance. J Mater Chem C 5:1920–1934

    CAS  Google Scholar 

  224. Mohammed M, Li Z, Cui J, Chen T (2012) Junction investigation of graphene/silicon Schottky diodes. Nanoscale Res Lett 7:302

    Google Scholar 

  225. Behura SK, Nayak S, Mukhopadhyay I, Jani O (2014) Junction characteristics of chemically-derived graphene/p-Si heterojunction solar cell. Carbon 67:766–774

    CAS  Google Scholar 

  226. Kalita G, Wakita K, Umeno M, Tanemura M (2013) Fabrication and characteristics of solution-processed graphene oxide-silicon heterojunction. Phys Stat Solidi RRL 7:340–343

    CAS  Google Scholar 

  227. Zhu M, Li X, Guo Y, Li X, Sun P, Zang X, Wang K, Zhong M, Wu D, Zhu H (2014) Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. Nanoscale 6:4909–4914

    CAS  Google Scholar 

  228. Larsen LJ, Shearer CJ, Ellis AV, Shapter JG (2015) Optimization and doping of reduced graphene oxide-silicon solar cells. J Phys Chem C 120:15648–15656

    Google Scholar 

  229. He L, Tjong SC (2017) Silver-decorated reduced graphene oxides as novel building blocks for transparent conductive films. RSC Adv 7:2058–2065

    CAS  Google Scholar 

  230. Ning J, Hao L, Jin M, Qiu X, Shen Y, Liang J, Zhang X, Wang B, Li X, Zhi L (2017) A facile reduction method for roll-to-roll production of high performance graphene-based transparent conductive films. Adv Mater 29:1605028

    Google Scholar 

  231. Gomez-Navarro C, Thomas Weitz R, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503

    CAS  Google Scholar 

  232. Kaiser AB, Gomez-Navarro C, Sundaram RS, Burghard M, Kern K (2009) Electrical conduction mechanism in chemically derived graphene monolayers. Nano Lett 9:1787–1792

    CAS  Google Scholar 

  233. Lancellotti L, Polichetti T, Ricciardella F, Tari O, Gnanapragasam S, Daliento S, Di Francia G (2012) Graphene applications in Schottky barrier solar cells. Thin Solid Films 522:390–394

    CAS  Google Scholar 

  234. Alnuaimi A, Almansouri I, Saadat I, Nayfeh A (2018) High performance graphene-silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition. Sol Energy 164:174–179

    CAS  Google Scholar 

  235. Liu CP, Hui YY, Chen ZH, Ren JG, Zhou Y, Tang L, Tang YB, Zapien JA, Lau SP (2013) Solution-processable graphene oxide as an insulator layer for metal-insulator-semiconductor silicon solar cells. RSC Adv 3:17918–17923

    CAS  Google Scholar 

  236. Lancellotti L, Sansone L, Bobeico E, Casalino M, Della Noce M, Iodice M, Giordano M, Delli Veneri P (2016) Graphene like materials in TCO/silicon Schottky junction solar cells. IET Conf Publ. https://doi.org/10.1049/cp.2016.0949

    Article  Google Scholar 

  237. Lancellotti L, Bobeico E, Capasso A, Della Noce M, Dikonimos T, Lisi N, Delli Veneri P (2014) Effects of HNO3 molecular doping in graphene/Si Schottky barrier solar cells. Fotonica AEIT Italian Conference on Photonics Technologies, Fotonica AEIT 2014. https://doi.org/10.1109/fotonica.2014.6843898

Download references

Acknowledgements

The authors acknowledge the financial supports from the Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Malaysia Ministry of Education and Malaysia Ministry of Science, Technology and Innovation through various research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Manaf Hashim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, M.F., Hashim, A.M. Review and assessment of photovoltaic performance of graphene/Si heterojunction solar cells. J Mater Sci 54, 911–948 (2019). https://doi.org/10.1007/s10853-018-2947-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2947-3

Keywords

Navigation