Skip to main content
Log in

Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, graphene oxide (GO) sheets produced in the form of stable aqueous dispersions were deposited on Au (111), freshly cleaved mica, and highly oriented pyrolytic graphite (HOPG) substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to study the presence and distinct contact of GO sheets on the substrates. It was revealed from the topography images that high-quality ultraflat GO monolayer sheets formed on the substrates without distinct cracking/wrinkling or folding. GO sheets with apparent height variation observed by microscopy also indicate ultraflat deposition with clear underlying steps. It was observed that ultrasonication and centrifuge steps prior to deposition were very effective for getting oxidation debris (OD)-free ultraflat single monolayer GO nanosheets onto substrates and that the process depends on the concentration of supplied GO solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).

    Article  Google Scholar 

  3. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff, Nature 448, 457 (2007).

    Article  Google Scholar 

  4. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).

    Article  Google Scholar 

  5. N. Mohanty and V. Berry, Nano Lett. 8, 4469 (2008).

    Article  Google Scholar 

  6. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  Google Scholar 

  7. A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B 102, 4477 (1998).

    Article  Google Scholar 

  8. H.C. Schniepp, J.-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, and I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006).

    Article  Google Scholar 

  9. W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).

    Article  Google Scholar 

  10. X. Wang, L. Zhi, N. Tsao, Z. Tomović, J. Li, and K. Müllen, Angew. Chem. Int. Ed. Engl. 47, 2990 (2008).

    Article  Google Scholar 

  11. J. Atalaya, A. Isacsson, and J.M. Kinaret, Nano Lett. 8, 4196 (2008).

    Article  Google Scholar 

  12. S. Park, R.S. Ruoff, and M. Engineering, Nat. Nanotechnol. 4, 217 (2009).

    Article  Google Scholar 

  13. D.K. Pandey, T.F. Chung, G. Prakash, R. Piner, Y.P. Chen, and R. Reifenberger, Surf. Sci. 605, 1669 (2011).

    Article  Google Scholar 

  14. H. Seo, M.K. Son, N. Itagaki, K. Koga, and M. Shiratani, J. Power Sources 307, 25 (2016).

    Article  Google Scholar 

  15. Z. Guo, S. Wang, G. Wang, Z. Niu, J. Yang, and W. Wu, Carbon N. Y. 76, 203 (2014).

    Article  Google Scholar 

  16. A. Bonanni, A. Ambrosi, C.K. Chua, and M. Pumera, ACS Nano 8, 4197 (2014).

    Article  Google Scholar 

  17. J.-A. Yan, L. Xian, and M.Y. Chou, Phys. Rev. Lett. 103, 86802 (2009).

    Article  Google Scholar 

  18. J. Nakamura, J. Ito, and A. Natori, J. Phys: Conf. Ser. 100, 52019 (2008).

    Google Scholar 

  19. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Carbon N. Y. 45, 1558 (2007).

    Article  Google Scholar 

  20. C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).

    Article  Google Scholar 

  21. K. Morioku, N. Morimoto, Y. Takeuchi, and Y. Nishina, Sci. Rep. 6, 25824 (2016).

    Article  Google Scholar 

  22. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).

    Article  Google Scholar 

  23. A.F. Faria, D.S.T. Martinez, A.C.M. Moraes, M.E.H. Maia da Costa, E.B. Barros, A.G. Souza Filho, A.J. Paula, and O.L. Alves, Chem. Mater. 24, 4080 (2012).

    Article  Google Scholar 

  24. D. López-Díaz, M.M. Velázquez, S. Blanco de La Torre, A. Pérez-Pisonero, R. Trujillano, J.L. García Fierro, S. Claramunt, and A. Cirera, Chem. Phys. Chem 14, 4002 (2013).

    Article  Google Scholar 

  25. H.R. Thomas, S.P. Day, W.E. Woodruff, C. Vallés, R.J. Young, I.A. Kinloch, G.W. Morley, J.V. Hanna, N.R. Wilson, and J.P. Rourke, Chem. Mater. 25, 3580 (2013).

  26. J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J.M.D. Tascón, Langmuir 25, 5957 (2009).

    Article  Google Scholar 

  27. H.C. Schniepp, K.N. Kudin, J.-L. Li, R.K. Prud’homme, R. Car, D.A. Saville, and I.A. Aksay, ACS Nano 2, 2577 (2008).

    Article  Google Scholar 

  28. L.X. Li, R.P. Liu, Z.W. Chen, Q. Wang, M.Z. Ma, Q. Jing, G. Li, and Y. Tian, Carbon N. Y. 44, 1544 (2006).

    Article  Google Scholar 

  29. L. Wang, Surf. Sci. 429, 178 (1999).

    Article  Google Scholar 

  30. A. Sinitskii, D.V. Kosynkin, A. Dimiev, and J.M. Tour, ACS Nano 4, 3095 (2010).

    Article  Google Scholar 

  31. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, and E.D. Williams, Nano Lett. 7, 1643 (2007).

    Article  Google Scholar 

  32. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, and R.S. Ruoff, J. Mater. Chem. 16, 155 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Komeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.Z.H., Shahed, S.M.F., Yuta, N. et al. Deposition of an Ultraflat Graphene Oxide Nanosheet on Atomically Flat Substrates. J. Electron. Mater. 46, 4160–4165 (2017). https://doi.org/10.1007/s11664-017-5327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5327-x

Keywords

Navigation