Skip to main content

Advertisement

Log in

Layer-by-Layer Titanium (IV) Chloride Treatment of TiO2 Films to Improve Solar Energy Harvesting in Dye-Sensitized Solar Cells

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A layer-by-layer titanium (IV) chloride treatment was applied on different layers of TiO2 in dye-sensitized solar cells (DSSCs). The effects were analysed and compared with standard untreated devices. A significant increase in short-circuit current density (JSC) was observed by employing layer-by-layer TiCl4 treatment of TiO2 in DSSCs. This increase of JSC is attributed to the increased inter-particle connectivity and increase in TiO2 nanoparticle size, resulting in better electron transfer and a lower charge carrier recombination rate. The DSSC fabricated with layer-by-layer-treated TiO2 achieved power conversion efficiency of 8.3%, which is significantly higher than the 6.7% achieved for the DSSC fabricated without TiCl4 treatment. Electrochemical impedance spectroscopy (EIS) was performed to assess the better performance of the device fabricated with TiCl4 treatment. Atomic force microscopy and surface roughness were studied to visualize and statistically determine the function of TiCl4 treatment on different layers of TiO2. Transient photocurrent and transient photovoltage measurements were also performed to gain insight into interfacial charge carrier recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A.A. Shah, M.H. Sayyad, N. Nasr, R.A. Toor, S. Sajjad, H. Elbohy, and Q. Qiao, J. Mater. Sci.: Mater. Electron. 28, 6552 (2017).

    CAS  Google Scholar 

  2. S.A.A. Shah, M.H. Sayyad, F. Wahab, K.A. Khan, M.A. Munawar, H. Elbohy, and Q. Qiao, J. Mater. Sci. Mater. Electron. 27, 4501 (2016).

    Article  CAS  Google Scholar 

  3. S.A.A. Shah, M.H. Sayyad, S. Abdulkarim, and Q. Qiao, J. Electron. Mater. 47, 4737 (2018).

    Article  CAS  Google Scholar 

  4. R.A. Toor, M.H. Sayyad, S.A.A. Shah, N. Nasr, F. Ijaz, and M.A. Munawar, J. Comput. Electron. 17, 821 (2018).

    Article  CAS  Google Scholar 

  5. A. Pallikkara and K. Ramakrishnan, Int. J. Energy Res. https://doi.org/10.1002/er.5941.

  6. M. Aftabuzzaman, C.Y. Lu, and H.K. Kim, Nanoscale 12, 17590 (2020).

    Article  CAS  Google Scholar 

  7. M. Golshan, E.R.T. Esmail, M.S. Kalajahi, and H.R. Mamaqani, Eur. Polym. J. 137, 16 (2020).

    Article  Google Scholar 

  8. L.P. Teo, M.H. Buraidah, and A.K. Arof, Ionics 26, 4215 (2020).

    Article  CAS  Google Scholar 

  9. G.B.M.M.M. Nishshanke, A.K. Arof, and T.M.W.J. Bandara, Ionics 26, 3685 (2020).

    Article  CAS  Google Scholar 

  10. P. Mahadevi and S. Sumathi, Synth. Commun. 50, 2237 (2020).

    Article  CAS  Google Scholar 

  11. M.R. Samantaray, A.K. Mondal, G. Murugadoss, S. Pitchaimuthu, S. Das, R. Bahru, and M.A. Mohamed, Materials 13, 2779 (2020).

    Article  CAS  Google Scholar 

  12. P. Semalti and S.N. Sharma, J. Nanosci. Nanotechnol. 20, 3647 (2020).

    Article  CAS  Google Scholar 

  13. C.H.A. Tsang, H. Huang, J. Xuan, H. Wang, and D.Y.C. Leung, Renew. Sust. Energ. Rev. 120, 109656 (2020).

    Article  CAS  Google Scholar 

  14. V. Rondan-Gomez, I.M.D.L. Santos, D. Seuret-Jiménez, F. Ayala-Mató, A. Zamudio-Lara, T. Robles-Bonilla, and M. Courel, Appl. Phys. A 125, 1 (2019).

    Article  Google Scholar 

  15. J. Boo, N. Sang-Hun, K.H. Lee, and J.H. Yu, Appl. Sci. Convergence Technol. 28, 194 (2019).

    Article  Google Scholar 

  16. M.Z.H. Khan and X.H. Liu, J. Electron. Mater. 48, 4148 (2019).

    Article  CAS  Google Scholar 

  17. H. Iftikhar, G.G. Sonai, S.G. Hashmi, A.F. Nogueira, and P.D. Lund, Materials 12, 1998 (2019).

    Article  CAS  Google Scholar 

  18. N.A. Karim, U. Mehmood, H.F. Zahid, and T. Asif, Sol. Energy 185, 165 (2019).

    Article  CAS  Google Scholar 

  19. D. Sinha, D. De, A. Ayaz, Sadhana Acad. Proc.Eng. Sci. 45 (2020). https://www.ias.ac.in/article/fulltext/sadh/045/0175

  20. L. Kavan, Z.V. Zivcova, M. Zlamalova, S.M. Zakeeruddin, and Michael Grätzel, J. Phys. Chem. C 124, 6512 (2020).

    Article  CAS  Google Scholar 

  21. H. Elbohy, K.M. Reza, S. Abdulkarim, and Q. Qiao, Sustain. Energy Fuels 2, 403 (2018).

    Article  CAS  Google Scholar 

  22. S. Kathirvel, P. Sireesha, C. Su, B.R. Chen, and W.R. Li, Appl. Surf. Sci. 519, 146082 (2020).

    Article  CAS  Google Scholar 

  23. L. Zhang, X. Yang, W. Wang, G.G. Gurzadyan, J. Li, X. Li, J. An, Z. Yu, H. Wang, B. Cai, A. Hagfeldt, and L. Sun, ACS Energy Lett. 4, 943 (2019).

    Article  CAS  Google Scholar 

  24. S. Fabbiyola and L.J. Kennedy, J. Nanosci. Nanotechnol. 19, 2963 (2019).

    Article  CAS  Google Scholar 

  25. B.B. Cirak, Z. Demir, C. Eden, Y. Erdogan, B. Caglar, S. Mo, T. Karadeniz, A.E. Kilinc, and C.Cirak Ekinci, J. Mater. Sci.: Mater. Electron. 30, 6335 (2019).

    CAS  Google Scholar 

  26. V. More, K. Mokurala, and P. Bhargava, Appl. Phys. A 124, 345 (2018).

    Article  Google Scholar 

  27. N.F.M. Sharif, S. Shafie, M.Z.A. Ab Kadir, W.Z.W. Hasan, M.N. Mustafa, and B. Samaila, Res. Phys. 15, 102725 (2019).

    Google Scholar 

  28. J. Akilavasan, K. Wijeratne, A. Gannoruwa, A.R.M. Alamoud, and J. Bandara, Appl. Nanosci. 4, 185 (2014).

    Article  CAS  Google Scholar 

  29. S.A. Kazmi, S. Hameed, and A. Azam, Energy Sources Part A 39, 67 (2017).

    Article  CAS  Google Scholar 

  30. L. Vesce, R. Riccitelli, G. Soscia, T.M. Brown, A. Di Carlo, A. Reale, and J. Non-Cryst, Solids 356, 1958 (2010).

    CAS  Google Scholar 

  31. S.G. Adhikari, A. Shamsaldeen, and G.G. Andersson, J. Chem. Phys. 151, 164704 (2019).

    Article  Google Scholar 

  32. A. Sedghi and H.N. Miankushki, Jpn. J. Appl. Phys. 52, 075002 (2013).

    Article  Google Scholar 

  33. M. Shahiduzzaman, T. Sakuma, T. Kaneko, K. Tomita, M. Isomura, T. Taima, S. Umeza, and S. Iwamori, Sci. Rep. 9, 19494 (2019).

    Article  CAS  Google Scholar 

  34. N. Musila, M. Munji, J. Simuyu, E. Maskia, and R. Nyenge, Traektoriâ Nauki = Path Sci. (2018). https://doi.org/10.22178/pos.38-10.

    Article  Google Scholar 

  35. H. Elbohy, A. Aboagye, S. Sidgel, Q. Wang, M.H. Sayyad, L. Zhang, and Q. Qiao, J. Mater. Chem. A 3, 17721 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support extended by Dongguan University of Technology, China. This project was also supported by HEC Pakistan and US National Academy of Sciences, under the PAK-US Science and Technology Cooperation Program, Phase-V, project number 5-530/PAK-US/HEC/2013/193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Afaq Ali Shah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.A.A., Guo, Z., Sayyad, M.H. et al. Layer-by-Layer Titanium (IV) Chloride Treatment of TiO2 Films to Improve Solar Energy Harvesting in Dye-Sensitized Solar Cells. J. Electron. Mater. 50, 613–619 (2021). https://doi.org/10.1007/s11664-020-08598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08598-6

Keywords

Navigation