Skip to main content
Log in

Synthesis, computational study and characterization of a 3-{[2,3-diphenylquinoxalin-6-yl]diazenyl}-4-hydroxy-2H-chromen-2- one azo dye for dye-sensitized solar cell applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A solution-processable 3-{[2,3-diphenylquinoxalin-6-yl]diazenyl}-4-hydroxy-2H-chromen-2-one azo dye was synthesized. Analysis of measured UV-visible absorption spectrum and frontier orbitals computed using simplified time dependent density functional theory (sTDDFT) revealed its suitability for optoelectronic applications. A dye-sensitized solar cell (DSSC) was fabricated using this metal-free organic dye as a sensitizer. The photovoltaic parameters of the cell were studied under simulated AM 1.5 illumination (100 mWcm\(^{-2}\)). Comparing the photovoltaic data with a DSSC using a different member of the azo family of dyes, open circuit voltage and fill factor of the device studied in this work were found higher by 33 and 104%, respectively. The performance was also compared with the DSSCs fabricated using 49 commercial mordant dyes and open circuit photovoltage of the device studied in this work was found higher. To gain insight into its charge transport, impedance spectroscopy was performed. Impedance spectra were observed both voltage and frequency dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O’regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. Tahir, M., Sayyad, M.H., Clark, J., Wahab, F., Aziz, F., Shahid, M., et al.: Humidity, light and temperature dependent characteristics of Au/N-BuHHPDI/Au surface type multifunctional sensor. Sens. Actuators B Chem. 192, 565–571 (2014)

    Article  Google Scholar 

  3. Shah, S.A.A., Sayyad, M.H., Wahab, F., Khan, K.A., Munawar, M.A., Elbohy, H., et al.: Synthesis, modeling and photovoltaic properties of a benzothiadiazole based molecule for dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 27, 4501–4507 (2016)

    Article  Google Scholar 

  4. Elbohy, H., Aboagye, A., Sigdel, S., Wang, Q., Sayyad, M.H., Zhang, L., et al.: Graphene-embedded carbon nanofibers decorated with Pt nanoneedles for high efficiency dye-sensitized solar cells. J. Mater. Chem. A 3, 17721–17727 (2015)

    Article  Google Scholar 

  5. Gong, J., Sumathy, K., Qiao, Q., Zhou, Z.: Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sustain. Energy Rev. 68, 234–246 (2017)

    Article  Google Scholar 

  6. Nazeeruddin, M.K., Baranoff, E., Grätzel, M.: Dye-sensitized solar cells: a brief overview. Sol. Energy 85, 1172–1178 (2011)

    Article  Google Scholar 

  7. Campbell, W.M., Burrell, A.K., Officer, D.L., Jolley, K.W.: Porphyrins as light harvesters in the dye-sensitised TiO 2 solar cell. Coord. Chem. Rev. 248, 1363–1379 (2004)

    Article  Google Scholar 

  8. Saranya, K., Rameez, M., Subramania, A.: Developments in conducting polymer based counter electrodes for dye-sensitized solar cells-An overview. Eur. Polym. J. 66, 207–227 (2015)

    Article  Google Scholar 

  9. Wali, Q., Fakharuddin, A., Jose, R.: Tin oxide as a photoanode for dye-sensitised solar cells: current progress and future challenges. J. Power Sour. 293, 1039–1052 (2015)

    Article  Google Scholar 

  10. Kanaparthi, R.K., Kandhadi, J., Giribabu, L.: Metal-free organic dyes for dye-sensitized solar cells: recent advances. Tetrahedron 68, 8383–8393 (2012)

    Article  Google Scholar 

  11. Upadhyaya, H.M., Senthilarasu, S., Hsu, M.-H., Kumar, D.K.: Recent progress and the status of dye-sensitised solar cell (DSSC) technology with state-of-the-art conversion efficiencies. Sol. Energy Mater. Sol. Cells 119, 291–295 (2013)

    Article  Google Scholar 

  12. Gong, J., Liang, J., Sumathy, K.: Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 16, 5848–5860 (2012)

    Article  Google Scholar 

  13. Narayan, M.R.: Review: dye sensitized solar cells based on natural photosensitizers. Renew. Sustain. Energy Rev. 16, 208–215 (2012)

    Google Scholar 

  14. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H.: Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  Google Scholar 

  15. Ludin, N.A., Mahmoud, A.A.-A., Mohamad, A.B., Kadhum, A.A.H., Sopian, K., Karim, N.S.A.: Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renew. Sustain. Energy Rev. 31, 386–396 (2014)

    Article  Google Scholar 

  16. Kouhnavard, M., Ikeda, S., Ludin, N., Khairudin, N.A., Ghaffari, B., Mat-Teridi, M., et al.: A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew. Sustain. Energy Rev. 37, 397–407 (2014)

    Article  Google Scholar 

  17. Ye, M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C., et al.: Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18, 155–162 (2015)

    Article  Google Scholar 

  18. Weerasinghe, H.C., Huang, F., Cheng, Y.-B.: Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2, 174–189 (2013)

    Article  Google Scholar 

  19. Shah, S.A.A., Sayyad, M.H., Wahab, F., Khan, K.A., Munawar, M.A., Elbohy, H., et al.: Synthesis, modeling and photovoltaic properties of a benzothiadiazole based molecule for dye-sensitized solar cells. J. Mater. Sci. Mater. Electron. 5, 4501–4507 (2016)

    Article  Google Scholar 

  20. Mahmood, A., Tahir, M.H., Irfan, A., Al-Sehemi, A.G., Al-Assiri, M.: Heterocyclic azo dyes for dye sensitized solar cells: a quantum chemical study. Comput. Theor. Chem. 1066, 94–99 (2015)

    Article  Google Scholar 

  21. Novir, S.B., Hashemianzadeh, S.M.: Density functional theory study of new azo dyes with different \(\pi \)-spacers for dye-sensitized solar cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 143, 20–34 (2015)

    Article  Google Scholar 

  22. Saini, R.K., Singh, D., Bhagwan, S., Nishal, V., Singh, I., Kadyan, P.S.: Fabrication and photovoltaic performance of nano-TiO2 based dye sensitized solar cells using azo dyes as photosensitizers. J. Nanoelectron. Optoelectron. 11, 715–722 (2016)

    Article  Google Scholar 

  23. Ahmad, Z., Sayyad, M.: Electrical characteristics of a high rectification ratio organic Schottky diode based on methyl red. Optoelectron. Adv. Mater. Rapid Commun. 3, 509–512 (2009)

    Google Scholar 

  24. Tahir, M., Hassan Sayyad, M., Wahab, F., Ahmad Khalid, F., Aziz, F., Naeem, S., et al.: Enhancement in the sensing properties of methyl orange thin film by TiO 2 nanoparticles. Int. J. Mod. Phys. B 28, 1450032 (2014)

    Article  Google Scholar 

  25. Ahmad, Z., Sayyad, M., Saleem, M., Karimov, K.S., Shah, M.: Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Phys. E 41, 18–22 (2008)

    Article  Google Scholar 

  26. Al-Mudhaffer, M.F., Al-Ahmad, A.Y., Hassan, Q.M.A., Emshary, C.A.: Optical characterization and all-optical switching of benzenesulfonamide azo dye. Opt. Int. J. Light Electron Opt. 127, 1160–1166 (2016)

    Article  Google Scholar 

  27. Parvin, M., Ahamed, B.: Investigation of optical limiting properties of Azophloxine dye using nanosecond Z-scan technique. Int. J. ChemTech Res. 6, 2493–2498 (2014)

    Google Scholar 

  28. Akbari, A., Alinia, Z.: Comparative analysis of the Ni (II) complex of the N,N’-Bis-(4-hydroxysalicylidene)-1, 2-diaminoethane: combined experimental and theoretical study (DFT/PW91). Comput. Res. 1, 19–26 (2013)

    Google Scholar 

  29. Te Velde, G.T., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J., Snijders, J.G., et al.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)

    Article  Google Scholar 

  30. Guerra, C.F., Snijders, J., Te Velde, G., Baerends, E.: Towards an order-N DFT method. Theor. Chem. Acc. 99, 391–403 (1998)

    Google Scholar 

  31. Mahmood, A., Khan, S.U.-D., Rana, U.A.: Theoretical designing of novel heterocyclic azo dyes for dye sensitized solar cells. J. Comput. Electron. 13, 1033–1041 (2014)

    Article  Google Scholar 

  32. te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Fonseca Guerra, C., van Gisbergen, S.J.A., Snijders, J.G., et al.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)

    Article  Google Scholar 

  33. Hagfeldt, A., Graetzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995)

    Article  Google Scholar 

  34. Megala, M., Rajkumar, B.J.: Theoretical study of anthoxanthin dyes for dye sensitized solar cells (DSSCs). J. Comput. Electron. 15, 557–568 (2016)

    Article  Google Scholar 

  35. Kyaw, H.H., Bora, T., Dutta, J.: One-diode model equivalent circuit analysis for ZnO nanorod-based dye-sensitized solar cells: effects of annealing and active area. IEEE Trans. Nanotechnol. 11, 763–768 (2012)

    Article  Google Scholar 

  36. Ezema, C., Nwanya, A., Ezema, B., Patil, B., Bulakhe, R., Ukoha, P., et al.: Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye. Appl. Phys. A 122, 435 (2016)

    Article  Google Scholar 

  37. Millington, K.R., Fincher, K.W., King, A.L.: Mordant dyes as sensitisers in dye-sensitised solar cells. Sol. Energy Mater. Sol. Cells 91, 1618–1630 (2007)

    Article  Google Scholar 

  38. Park, K., Zhang, Q., Xi, J., Cao, G.: Enhanced charge transport properties by strengthened necks between TiO 2 aggregates for dye sensitized solar cells. Thin Solid Films 588, 19–25 (2015)

    Article  Google Scholar 

  39. Braña, A., Forniés, E., López, N., García, B.: High efficiency Si solar cells characterization using impedance spectroscopy analysis. In: Journal of Physics: Conference Series, p. 012069 (2015)

  40. Yahia, I., AlFaify, S., Al-ghamdi, A.A., Hafez, H.S., EL-Bashir, S., Al-Bassam, A., et al.: Synthesis and characterization of DSSC by using Pt nano-counter electrode: photosensor applications. Appl. Phys. A 122, 1–6 (2016)

    Google Scholar 

  41. Atif, M., Farooq, W., Fatehmulla, A., Aslam, M., Ali, S.M.: Photovoltaic and impedance spectroscopy study of screen-printed TiO2 based CdS quantum dot sensitized solar cells. Materials 8, 355–367 (2015)

    Article  Google Scholar 

  42. Idigoras, J., Tena-Zaera, R., Anta, J.A.: Control of the recombination rate by changing the polarity of the electrolyte in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 16, 21513–21523 (2014)

    Article  Google Scholar 

  43. Garcia-Belmonte, G., Munar, A., Barea, E.M., Bisquert, J., Ugarte, I., Pacios, R.: Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy. Org. Electron. 9, 847–851 (2008)

    Article  Google Scholar 

  44. Mora-Seró, I., Garcia-Belmonte, G., Boix, P.P., Vázquez, M.A., Bisquert, J.: Impedance spectroscopy characterisation of highly efficient silicon solar cells under different light illumination intensities. Energy Environ. Sci. 2, 678–686 (2009)

    Article  Google Scholar 

  45. Benetti, D., Dembele, K.T., Benavides, J., Zhao, H., Cloutier, S., Concina, I., et al.: Functionalized multi-wall carbon nanotubes/TiO 2 composites as efficient photoanodes for dye sensitized solar cells. J. Mater. Chem. C 4, 3555–3562 (2016)

    Article  Google Scholar 

  46. Philip, A.: Effect of frequency and bias voltage on the electrical and dielectric properties of atomic layer deposited Al/Al2O3/p-Si MOS structure at room temperature. Indian J. Pure Appl. Phys. (IJPAP) 53, 464–469 (2015)

    Google Scholar 

  47. Özdemir, A., Akcan, D., Lapa, H., Yavuz, A., Duman, S.: On the frequency CV and GV characteristics of Au/Poly (3-Substituted thiophene)(P3DMTFT)/n-GaAs Schottky Barrier Diodes. Acta Phys. Pol. A 128, B450–B454 (2015)

    Article  Google Scholar 

  48. Bisquert, J.: Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5, 5360–5364 (2003)

    Article  Google Scholar 

  49. Li, B., Chen, J., Zheng, J., Zhao, J., Zhu, Z., Jing, H.: Photovoltaic performance enhancement of dye-sensitized solar cells by formation of blocking layers via molecular electrostatic effect. Electrochim. Acta 59, 207–212 (2012)

    Article  Google Scholar 

  50. Carr, J., Chaudhary, S.: On accurate capacitance characterization of organic photovoltaic cells. Appl. Phys. Lett. 100, 213902 (2012)

    Article  Google Scholar 

  51. Jradi, F.M., Kang, X., O’Neil, D., Pajares, G., Getmanenko, Y.A., Szymanski, P., et al.: Near-infrared asymmetrical squaraine sensitizers for highly efficient dye sensitized solar cells: the effect of \(\pi \)-bridges and anchoring groups on solar cell performance. Chem. Mater. 27, 2480–2487 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support extended by the HEC Pakistan and US National Academy of Sciences, under the PAK–US Science and Technology Cooperative Program, Phase-V, Project Number 5-530/PAK-US/HEC/2013/193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Hassan Sayyad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toor, R.A., Sayyad, M.H., Shah, S.A.A. et al. Synthesis, computational study and characterization of a 3-{[2,3-diphenylquinoxalin-6-yl]diazenyl}-4-hydroxy-2H-chromen-2- one azo dye for dye-sensitized solar cell applications. J Comput Electron 17, 821–829 (2018). https://doi.org/10.1007/s10825-018-1140-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1140-x

Keywords

Navigation