Skip to main content

Advertisement

Log in

Role of Nanostructured Photoanode and Counter Electrode on Efficiency Enhancement of DSSCs

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In recent years, dye-sensitized solar cells (DSSCs) have received widespread attention due to their low cost compared to conventional silicon photovoltaic cells. However, to reach optimal device efficiencies, much work is still required. Nanotechnology opens a door to creating various nanostructures and tailing materials for use in DSSCs. Here we reviewed the development in nanomaterials based on modified electrodes which utilize the advantages of high electrocatalytic ability and high surface area due to their nanostructured morphology. This review highlights recent developments in DSSCs and their key components with respect to nanostructured modification, which will provide deep insights and guidance for researchers to design and develop cost-effective and efficient DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Regan and M. Grätzel, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0.

    Google Scholar 

  2. S. Yang, Y. Huang, C. Huang, and X. Zhao, Chem. Mater. 14, 1500 (2002). https://doi.org/10.1021/cm010609e.

    Google Scholar 

  3. X. Zhang, Sol. Energy Mater. Sol. Cells 81, 197 (2004). https://doi.org/10.1016/j.solmat.2003.11.005.

    Google Scholar 

  4. F. Gong, H. Wang, and Z.-S. Wang, Phys. Chem. Chem. Phys. 13, 17676 (2011). https://doi.org/10.1039/c1cp22542a.

    Google Scholar 

  5. S.M.H. Hejazi, J. Aghazadeh Mohandesi, and M. Javanbakht, Sol. Energy 144, 699 (2017). https://doi.org/10.1016/J.SOLENER.2016.11.033.

    Google Scholar 

  6. Y. Xu, H. Zhang, X. Li, Q. Wu, W. Wang, and Z. Li, et al., Appl. Surf. Sci. 424, 245 (2017). https://doi.org/10.1016/J.APSUSC.2017.04.210.

    Google Scholar 

  7. M.S. Ahmad, N.A. Rahim, and A.K. Pandey, Optik (Stuttg) 157, 134 (2018). https://doi.org/10.1016/J.IJLEO.2017.11.073.

    Google Scholar 

  8. Q. Liu, Z.-S. Li, and S.-L. Chen, Ind. Eng. Chem. Res. 55, 455 (2016). https://doi.org/10.1021/acs.iecr.5b03464.

    Google Scholar 

  9. S. Carli, L. Casarin, Z. Syrgiannis, R. Boaretto, E. Benazzi, S. Caramori, M. Prato, and C.A. Bignozzi, ACS Appl. Mater. Interfaces. 8, 14604 (2016). https://doi.org/10.1021/acsami.6b03803.

    Google Scholar 

  10. M. Rani and S.K. Tripathi, Renew. Sustain. Energy Rev. 61, 97 (2016). https://doi.org/10.1016/j.rser.2016.03.012.

    Google Scholar 

  11. Y.-H. Yu, W.-F. Chi, W.-C. Huang, W.-S. Wang, C.-J. Shih, and C.-H. Tsai, Org. Electron. 31, 207 (2016). https://doi.org/10.1016/j.orgel.2016.01.038.

    Google Scholar 

  12. A. Pandikumar, S.-P. Lim, S. Jayabal, N.M. Huang, H.N. Lim, and R. Ramaraj, Renew. Sustain. Energy Rev. 60, 408 (2016). https://doi.org/10.1016/j.rser.2016.01.107.

    Google Scholar 

  13. L. Chen, W. Chen, and E. Wang, J. Power Sources 380, 18 (2018). https://doi.org/10.1016/J.JPOWSOUR.2017.11.057.

    Google Scholar 

  14. C.-A. Tseng, C.-P. Lee, Y.-J. Huang, H.-W. Pang, K.-C. Ho, and Y.-T. Chen, Mater Today Energy 8, 15 (2018). https://doi.org/10.1016/j.mtener.2018.02.006.

    Google Scholar 

  15. F. Miao, R. Miao, B. Tao, Z. Jin, J. Yu, and P.K. Chu, et al., Org. Electron. 45, 74 (2017). https://doi.org/10.1016/J.ORGEL.2017.02.040.

    Google Scholar 

  16. T. Mahmoudi, Y. Wang, Y.-B. Hahn. Nano Energy (2018). https://doi.org/10.1016/j.nanoen.2018.02.047.

  17. X. Chen, Q. Yang, Q. Meng, Z. Zhang, J. Zhang, and L. Liu, et al., Sol. Energy 144, 342 (2017). https://doi.org/10.1016/J.SOLENER.2017.01.035.

    Google Scholar 

  18. F.W. Low and C.W. Lai, Renew. Sustain. Energy Rev. 82, 103 (2018). https://doi.org/10.1016/J.RSER.2017.09.024.

    Google Scholar 

  19. B. Boro, B. Gogoi, B.M. Rajbongshi, and A. Ramchiary, Renew. Sustain. Energy Rev. 81, 2264 (2018). https://doi.org/10.1016/J.RSER.2017.06.035.

    Google Scholar 

  20. K. Robinson, G.R.A. Kumara, R.J.G.L.R. Kumara, E.N. Jayaweera, and R.M.G. Rajapakse, Org. Electron. 56, 159 (2018). https://doi.org/10.1016/j.orgel.2018.01.040.

    Google Scholar 

  21. M. Lee, S.K. Balasingam, Y. Ko, H.Y. Jeong, B.K. Min, and Y.J. Yun, et al., Synth. Met. 215, 110 (2016). https://doi.org/10.1016/j.synthmet.2015.12.015.

    Google Scholar 

  22. D. Sinha, D. De, and A. Ayaz, Spectrochim. Acta A Mol. Biomol. Spectrosc. 193, 467 (2018). https://doi.org/10.1016/J.SAA.2017.12.058.

    Google Scholar 

  23. M.A. Gaikwad, M.P. Suryawanshi, P.S. Maldar, T.D. Dongale, and A.V. Moholkar, Opt Mater (Amst) 78, 325 (2018). https://doi.org/10.1016/j.optmat.2018.02.040.

    Google Scholar 

  24. L. Chen, Y. Zhou, H. Dai, Z. Li, T. Yu, and J. Liu, et al., J. Mater. Chem. A 1, 11790 (2013). https://doi.org/10.1039/c3ta12511d.

    Google Scholar 

  25. K. Suzuki, M. Yamaguchi, M. Kumagai, and S. Yanagida, Chem. Lett. 32, 28 (2003). https://doi.org/10.1246/cl.2003.28.

    Google Scholar 

  26. R.A. Naphade, M. Tathavadekar, J.P. Jog, S. Agarkar, and S. Ogale, J. Mater. Chem. A 2, 975 (2014). https://doi.org/10.1039/C3TA13246C.

    Google Scholar 

  27. T. Battumur, S.H. Mujawar, Q.T. Truong, S.B. Ambade, D.S. Lee, and W. Lee, et al., Curr. Appl. Phys. 12, e49 (2012). https://doi.org/10.1016/j.cap.2011.04.028.

    Google Scholar 

  28. G. Wang, S. Zhuo, and W. Xing, Mater. Lett. 69, 27 (2012). https://doi.org/10.1016/j.matlet.2011.11.086.

    Google Scholar 

  29. J. Wang, J. Lin, J. Wu, M. Huang, Z. Lan, and Y. Chen, et al., Electrochim. Acta 70, 131 (2012). https://doi.org/10.1016/j.electacta.2012.03.047.

    Google Scholar 

  30. H. Lu, K. Deng, Z. Shi, Q. Liu, G. Zhu, and H. Fan, et al., Nanoscale Res. Lett. 9, 183 (2014). https://doi.org/10.1186/1556-276X-9-183.

    Google Scholar 

  31. J. Song, G.R. Li, F.Y. Xiong, and X.P. Gao, J. Mater. Chem. 22, 20580 (2012). https://doi.org/10.1039/c2jm34878k.

    Google Scholar 

  32. J. Bandara and U.W. Pradeep, Thin Solid Films 517, 952 (2008). https://doi.org/10.1016/j.tsf.2008.07.031.

    Google Scholar 

  33. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, and P.D. Yang, Nat. Mater. 4, 455 (2005). https://doi.org/10.1038/nmat1387.

    Google Scholar 

  34. A. Yousef, M.S. Akhtar, N.A.M. Barakat, M. Motlak, O.-B. Yang, and H.Y. Kim, Electrochim. Acta 102, 142 (2013). https://doi.org/10.1016/j.electacta.2013.04.013.

    Google Scholar 

  35. P. Poudel and Q. Qiao, Nano Energy 4, 157 (2014). https://doi.org/10.1016/j.nanoen.2013.10.012.

    Google Scholar 

  36. W.-Y. Rho, D.H. Song, H.-Y. Yang, H.-S. Kim, B.S. Son, and J.S. Suh, et al., J. Solid State Chem. 258, 271 (2018). https://doi.org/10.1016/J.JSSC.2017.10.018.

    Google Scholar 

  37. N. Mengal, A.A. Arbab, A.A. Memon, I.A. Sahito, and S.H. Jeong, Electrochim. Acta 261, 246 (2018). https://doi.org/10.1016/J.ELECTACTA.2017.12.109.

    Google Scholar 

  38. H. Park, S. Chang, J. Jean, J.J. Cheng, P.T. Araujo, and M. Wang, et al., Nano Lett. 13, 233 (2013). https://doi.org/10.1021/nl303920b.

    Google Scholar 

  39. V.A. Tran, T.T. Truong, T.A.P. Phan, T.N. Nguyen, Huynh T. Van, and A. Agresti, et al., Appl. Surf. Sci. 399, 515 (2017). https://doi.org/10.1016/J.APSUSC.2016.12.125.

    Google Scholar 

  40. C. Ma, L. Wang, Z. Guo, Y. Lv, W. Chen, and H. Ming, et al., Colloids Surf. A Physicochem. Eng. Asp 538, 94 (2018). https://doi.org/10.1016/J.COLSURFA.2017.10.089.

    Google Scholar 

  41. K.D. Benkstein, N. Kopidakis, J. van de Lagemaat, and A.J. Frank, J. Phys. Chem. B 107, 7759 (2003). https://doi.org/10.1021/jp022681l.

    Google Scholar 

  42. J.B. Baxter and E.S. Aydil, Appl. Phys. Lett. 86, 53114 (2005). https://doi.org/10.1063/1.1861510.

    Google Scholar 

  43. K. Asagoe, Y. Suzuki, S. Ngamsinlapasathian, and S. Yoshikawa, J. Phys: Conf. Ser. 61, 1112 (2007). https://doi.org/10.1088/1742-6596/61/1/220.

    Google Scholar 

  44. D. Sabba, S. Agarwala, S.S. Pramana, and S. Mhaisalkar, Nanoscale Res. Lett. 9, 14 (2014). https://doi.org/10.1186/1556-276X-9-14.

    Google Scholar 

  45. B. Tan and Y. Wu, J Phys Chem B 110, 15932 (2006). https://doi.org/10.1021/jp063972n.

    Google Scholar 

  46. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, Nano Lett. 6, 215 (2006). https://doi.org/10.1021/nl052099j.

    Google Scholar 

  47. S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki, and S. Yoshikawa, J. Photochem. Photobiol. A Chem. 184, 163 (2006). https://doi.org/10.1016/j.jphotochem.2006.04.010.

    Google Scholar 

  48. C.-C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, and S.-F. Chen, et al., J. Phys. Chem. C 112, 19151 (2008). https://doi.org/10.1021/jp806281r.

    Google Scholar 

  49. Y. Ji, M. Zhang, J. Cui, K.-C. Lin, H. Zheng, and J.-J. Zhu, et al., Nano Energy 1, 796 (2012). https://doi.org/10.1016/j.nanoen.2012.08.006.

    Google Scholar 

  50. S.V. Nair, A. Balakrishnan, K.R.V. Subramanian, A.M. Anu, A.M. Asha, and B. Deepika, Bull. Mater. Sci. 35, 489 (2012). https://doi.org/10.1007/s12034-012-0323-5.

    Google Scholar 

  51. M. Paulose, K. Shankar, O.K. Varghese, G.K. Mor, and C.A. Grimes, J. Phys. D Appl. Phys. 39, 2498 (2006). https://doi.org/10.1088/0022-3727/39/12/005.

    Google Scholar 

  52. L. Sun, S. Zhang, X. Sun, and X. He, J. Nanosci. Nanotechnol. 10, 4551 (2010). https://doi.org/10.1166/jnn.2010.1695.

    Google Scholar 

  53. Y.L. Cheong, K.P. Beh, F.K. Yam, and Z. Hassan, Superlattices Microstruct. 94, 74 (2016). https://doi.org/10.1016/j.spmi.2016.04.006.

    Google Scholar 

  54. Y. Diamant, S.G. Chen, O. Melamed, and A. Zaban, J Phys Chem B 107, 1977 (2003). https://doi.org/10.1021/jp027827v.

    Google Scholar 

  55. N.R. Neale, N. Kopidakis, J. van de Lagemaat, M. Grätzel, and A.J. Frank, J Phys Chem B 109, 23183 (2005). https://doi.org/10.1021/jp0538666.

    Google Scholar 

  56. S.K. Park, T.K. Yun, J.Y. Bae, and Y.S. Won, Appl. Surf. Sci. 285, 789 (2013). https://doi.org/10.1016/j.apsusc.2013.08.130.

    Google Scholar 

  57. X. Wu, L. Wang, F. Luo, B. Ma, C. Zhan, and Y. Qiu, J. Phys. Chem. C 111, 8075 (2007). https://doi.org/10.1021/jp0706533.

    Google Scholar 

  58. J. Xu, G. Wang, J. Fan, B. Liu, S. Cao, and J. Yu, J. Power Sources 274, 77 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.033.

    Google Scholar 

  59. J.T. Kim, C. Kim, S.J. Lee, S.W. Jeong, and Y.S. Han, Appl. Surf. Sci. 333, 704 (2015). https://doi.org/10.1016/j.apsusc.2015.01.227.

    Google Scholar 

  60. S. Dadgostar, F. Tajabadi, and N. Taghavinia, ACS Appl. Mater. Interfaces. 4, 2964 (2012). https://doi.org/10.1021/am300329p.

    Google Scholar 

  61. J. Lin, M. Guo, C.T. Yip, W. Lu, G. Zhang, and X. Liu, et al., Adv. Funct. Mater. 23, 5952 (2013). https://doi.org/10.1002/adfm.201301066.

    Google Scholar 

  62. J. Lin, X. Liu, M. Guo, W. Lu, G. Zhang, and L. Zhou, et al., Nanoscale 4, 5148 (2012). https://doi.org/10.1039/c2nr31268a.

    Google Scholar 

  63. X. Liu, J. Lin, and X. Chen, RSC Adv 3, 4885 (2013). https://doi.org/10.1039/c3ra40221e.

    Google Scholar 

  64. Y.-C. Park, Y.-J. Chang, B.-G. Kum, E.-H. Kong, J.Y. Son, and Y.S. Kwon, et al., J. Mater. Chem. 21, 9582 (2011). https://doi.org/10.1039/c1jm11043h.

    Google Scholar 

  65. J.-H. Yoon, S.-R. Jang, R. Vittal, J. Lee, and K.-J. Kim, J Photochem Photobiol A Chem 180, 184 (2006). https://doi.org/10.1016/j.jphotochem.2005.10.013.

    Google Scholar 

  66. M.A.K.L. Dissanayake, H.K.D.W.M.N. Divarathna, C.B. Dissanayake, G.K.R. Senadeera, P.M.P.C. Ekanayake, and C.A. Thotawattage, J. Photochem. Photobiol. A Chem. 322, 110 (2016). https://doi.org/10.1016/j.jphotochem.2016.02.017.

    Google Scholar 

  67. M. Iraj, F.D. Nayeri, E. Asl-Soleimani, and K. Narimani, J. Alloys Compd. 659, 44 (2016). https://doi.org/10.1016/j.jallcom.2015.11.004.

    Google Scholar 

  68. F.-I. Lai, J.-F. Yang, and S.-Y. Kuo, Materials (Basel) 8, 8860 (2015). https://doi.org/10.3390/ma8125499.

    Google Scholar 

  69. Q. Ma and Y.M. Huang, Mater. Lett. 148, 171 (2015). https://doi.org/10.1016/J.MATLET.2015.02.085.

    Google Scholar 

  70. H.-T. Chou and H.-C. Hsu, Solid State Electron. 116, 15 (2016). https://doi.org/10.1016/J.SSE.2015.11.004.

    Google Scholar 

  71. Y.-F. Wang, W.-X. Zhao, X.-F. Li, and D.-J. Li, Electrochim. Acta 151, 399 (2015). https://doi.org/10.1016/J.ELECTACTA.2014.11.059.

    Google Scholar 

  72. F. Al-juaid, A. Merazga, A. Al-Baradi, and F. Abdel-wahab, Solid State Electron. 87, 98 (2013). https://doi.org/10.1016/J.SSE.2013.06.007.

    Google Scholar 

  73. C.-S. Chou, F.-C. Chou, and J.-Y. Kang, Powder Technol. 215–216, 38 (2012). https://doi.org/10.1016/J.POWTEC.2011.09.003.

    Google Scholar 

  74. S.K. Tripathi, M. Rani, and N. Singh, Electrochim. Acta 167, 179 (2015). https://doi.org/10.1016/J.ELECTACTA.2015.02.245.

    Google Scholar 

  75. Q. Xu, F. Liu, Y. Liu, K. Cui, X. Feng, and W. Zhang, et al., Sci Rep 3, 2112 (2013). https://doi.org/10.1038/srep02112.

    Google Scholar 

  76. M. Sharma, P.R. Pudasaini, F. Ruiz-Zepeda, E. Vinogradova, and A.A. Ayon, ACS Appl. Mater. Interfaces. 6, 15472 (2014). https://doi.org/10.1021/am5040939.

    Google Scholar 

  77. S.-W. Baek, G. Park, J. Noh, C. Cho, C.-H. Lee, and M.-K. Seo, et al., ACS Nano 8, 3302 (2014). https://doi.org/10.1021/nn500222q.

    Google Scholar 

  78. J. Deng, J. Du, Y. Wang, Y. Tu, and J. Di, Electrochem. Commun. 13, 1517 (2011). https://doi.org/10.1016/j.elecom.2011.10.010.

    Google Scholar 

  79. M.A. Al-Azawi, N. Bidin, M. Bououdina, and S.M. Mohammad, Sol. Energy 126, 93 (2016). https://doi.org/10.1016/j.solener.2015.12.043.

    Google Scholar 

  80. O. Amiri, M. Salavati-Niasari, M. Farangi, M. Mazaheri, and S. Bagheri, Electrochim. Acta 152, 101 (2015). https://doi.org/10.1016/j.electacta.2014.11.105.

    Google Scholar 

  81. Y. Dou, F. Wu, L. Fang, G. Liu, C. Mao, and K. Wan, et al., J. Power Sour. 307, 181 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.113.

    Google Scholar 

  82. K. Hongsith, N. Hongsith, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, and P. Singjai, et al., Thin Solid Films 539, 260 (2013). https://doi.org/10.1016/j.tsf.2013.04.150.

    Google Scholar 

  83. L. Li, C. Xu, Y. Zhao, and K.J. Ziegler, Sol. Energy 132, 214 (2016). https://doi.org/10.1016/j.solener.2016.03.018.

    Google Scholar 

  84. M. Luoshan, L. Bai, C. Bu, X. Liu, Y. Zhu, and K. Guo, et al., J. Power Sour. 307, 468 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.028.

    Google Scholar 

  85. F. Meng, Y. Luo, Y. Zhou, J. Zhang, Y. Zheng, and G. Cao, et al., J. Power Sourc. 316, 207 (2016). https://doi.org/10.1016/j.jpowsour.2016.03.032.

    Google Scholar 

  86. Y.-C. Yen, P.-H. Chen, J.-Z. Chen, J.-A. Chen, and K.-J. Lin, ACS Appl. Mater. Interfaces. 7, 1892 (2015). https://doi.org/10.1021/am507668j.

    Google Scholar 

  87. H.-J. Koo, Y.J. Kim, Y.H. Lee, W.I. Lee, K. Kim, and N.-G. Park, Adv. Mater. 20, 195 (2008). https://doi.org/10.1002/adma.200700840.

    Google Scholar 

  88. D. Zhang, M. Wang, A.G. Brolo, J. Shen, X. Li, and S. Huang, J. Phys. D Appl. Phys. 46, 24005 (2013). https://doi.org/10.1088/0022-3727/46/2/024005.

    Google Scholar 

  89. W.-L. Liu, F.-C. Lin, Y.-C. Yang, C.-H. Huang, S. Gwo, and M.H. Huang, et al., Nanoscale 5, 7953 (2013). https://doi.org/10.1039/c3nr02800c.

    Google Scholar 

  90. F.D. Nayeri, E. Akbarnejad, M. Ghoranneviss, E.A. Soleimani, and S.A. Hashemizadeh, Superlattices Microstruct. 91, 244 (2016). https://doi.org/10.1016/j.spmi.2015.12.002.

    Google Scholar 

  91. R. Ruess, S. Haas, A. Ringleb, and D. Schlettwein, Electrochim. Acta 258, 591 (2017). https://doi.org/10.1016/J.ELECTACTA.2017.11.102.

    Google Scholar 

  92. D. Sinha, D. De, D. Goswami, and A. Ayaz, Mater Today Proc 5, 2056 (2018). https://doi.org/10.1016/J.MATPR.2017.09.201.

    Google Scholar 

  93. M.-H. Jung, Mater. Chem. Phys. 202, 234 (2017). https://doi.org/10.1016/J.MATCHEMPHYS.2017.09.034.

    Google Scholar 

  94. Q. Liu, Y. Wei, M.Z. Shahid, M. Yao, B. Xu, and G. Liu, et al., J. Power Sources 380, 142 (2018). https://doi.org/10.1016/J.JPOWSOUR.2018.01.089.

    Google Scholar 

  95. J. Dou, Y. Li, F. Xie, T.J. Chow, and M. Wei, Sol. Energy 155, 1 (2017). https://doi.org/10.1016/J.SOLENER.2017.06.016.

    Google Scholar 

  96. W.K. Tan, T. Ito, G. Kawamura, H. Muto, Z. Lockman, and A. Matsuda, Mater Today Commun 13, 354 (2017). https://doi.org/10.1016/J.MTCOMM.2017.11.004.

    Google Scholar 

  97. Y. Meng, Y. Lin, and Y. Lin, Ceram. Int. 40, 1693 (2014). https://doi.org/10.1016/j.ceramint.2013.07.065.

    Google Scholar 

  98. M.-Y. Lu, C.-Y. Tsai, H.-A. Chen, Y.-T. Liang, K.-P. Chen, and S. Gradečak, et al., Nano Energy 20, 264 (2016). https://doi.org/10.1016/j.nanoen.2015.12.026.

    Google Scholar 

  99. Y. Li, K. Pan, G. Wang, B. Jiang, C. Tian, and W. Zhou, et al., Dalton Trans. 42, 7971 (2013). https://doi.org/10.1039/c3dt32964j.

    Google Scholar 

  100. X.-H. Lu, Y.-Z. Zheng, S.-Q. Bi, J.-X. Zhao, X. Tao, and J.-F. Chen, J. Power Sources 243, 588 (2013). https://doi.org/10.1016/j.jpowsour.2013.06.058.

    Google Scholar 

  101. G.-B. Shan and G.P. Demopoulos, Adv. Mater. 22, 4373 (2010). https://doi.org/10.1002/adma.201001816.

    Google Scholar 

  102. J. Wu, J. Wang, J. Lin, Z. Lan, Q. Tang, M. Huang, Y. Huang, L. Fan, Q. Li, and X. Tang, Adv. Energy Mater. 2012, 78 (2012). https://doi.org/10.1002/aenm.201100531.

    Google Scholar 

  103. F. Gong, H. Wang, X. Xu, G. Zhou, and Z.-S. Wang, J. Am. Chem. Soc. 134, 10953 (2012). https://doi.org/10.1021/ja303034w.

    Google Scholar 

  104. X.-J. Sang, J.-S. Li, L.-C. Zhang, Z.-M. Zhu, W.-L. Chen, and Y.-G. Li, et al., Chem. Commun. (Camb.) 50, 14678 (2014). https://doi.org/10.1039/c4cc06211f.

    Google Scholar 

  105. Z. Shi, K. Deng, and L. Li, Sci Rep 5, 9317 (2015). https://doi.org/10.1038/srep09317.

    Google Scholar 

  106. M. Batmunkh, M.J. Biggs, and J.G. Shapter, Small 11, 2963 (2015). https://doi.org/10.1002/smll.201403155.

    Google Scholar 

  107. H. Elbohy, A. Aboagye, S. Sigdel, Q. Wang, M.H. Sayyad, and L. Zhang, et al., J Mater Chem A 3, 17721 (2015). https://doi.org/10.1039/C5TA04061B.

    Google Scholar 

  108. X. Ma, H. Elbohy, S. Sigdel, C. Lai, Q. Qiao, and H. Fong, RSC Adv 6, 11481 (2016). https://doi.org/10.1039/C5RA23856K.

    Google Scholar 

  109. G. Wang, J. Zhang, S. Kuang, and S. Zhuo, Mater. Sci. Semicond. Process. 38, 234 (2015). https://doi.org/10.1016/j.mssp.2015.04.025.

    Google Scholar 

  110. Y. Duan, Q. Tang, B. He, Z. Zhao, L. Zhu, and L. Yu, J. Power Sources 284, 349 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.045.

    Google Scholar 

  111. J. Liu, Y. Meng, B. Chen, Z. Zhou, Y. Ma, and F. Lv, et al., Acta Physiol. Plant. 37, 79 (2015). https://doi.org/10.1007/s11738-015-1824-9.

    Google Scholar 

  112. C.-R. Ke, C.-C. Chang, and J.-M. Ting, J. Power Sources 284, 489 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.077.

    Google Scholar 

  113. K. Sun, S. Zhang, P. Li, Y. Xia, X. Zhang, and D. Du, et al., J. Mater. Sci.: Mater. Electron. 26, 4438 (2015). https://doi.org/10.1007/s10854-015-2895-5.

    Google Scholar 

  114. T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, and I. Cesar, et al., J. Electrochem. Soc. 153, A2255 (2006). https://doi.org/10.1149/1.2358087.

    Google Scholar 

  115. Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, and H. Li, et al., Electrochem. Commun. 9, 596 (2007). https://doi.org/10.1016/j.elecom.2006.10.028.

    Google Scholar 

  116. E. Ramasamy, W.J. Lee, D.Y. Lee, and J.S. Song, Appl. Phys. Lett. 90, 173103 (2007). https://doi.org/10.1063/1.2731495.

    Google Scholar 

  117. W.J. Lee, E. Ramasamy, D.Y. Lee, and J.S. Song, J. Photochem. Photobiol. A Chem. 194, 27 (2008). https://doi.org/10.1016/j.jphotochem.2007.07.010.

    Google Scholar 

  118. E. Ramasamy, W.J. Lee, D.Y. Lee, and J.S. Song, Electrochem. Commun. 10, 1087 (2008). https://doi.org/10.1016/j.elecom.2008.05.013.

    Google Scholar 

  119. C.-S. Chou, R.-Y. Yang, M.-H. Weng, and C.-I. Huang, Adv. Powder Technol. 20, 310 (2009). https://doi.org/10.1016/j.apt.2008.12.002.

    Google Scholar 

  120. H. Bi, W. Zhao, S. Sun, H. Cui, T. Lin, and F. Huang, et al., Carb. N Y 61, 116 (2013). https://doi.org/10.1016/j.carbon.2013.04.075.

    Google Scholar 

  121. J.-Y. Lin, J.-H. Liao, and T.-Y. Hung, Electrochem. Commun. 13, 977 (2011). https://doi.org/10.1016/j.elecom.2011.06.016.

    Google Scholar 

  122. Y.-S. Wei, Q.-Q. Jin, and T.-Z. Ren, Solid State Electron. 63, 76 (2011). https://doi.org/10.1016/j.sse.2011.05.019.

    Google Scholar 

  123. J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, and I.A. Aksay, ACS Nano 4, 6203 (2010). https://doi.org/10.1021/nn1016428.

    Google Scholar 

  124. C.-A. Lin, C.-P. Lee, S.-T. Ho, T.-C. Wei, Y.-W. Chi, and K.P. Huang, et al., ACS Photon. 1, 1264 (2014). https://doi.org/10.1021/ph500219r.

    Google Scholar 

  125. W. Hong, Y. Xu, G. Lu, C. Li, G. Shi. Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells, vol. 10 (2008). https://doi.org/10.1016/j.elecom.2008.08.007.

  126. J. Chen, K. Li, Y. Luo, X. Guo, D. Li, and M. Deng, et al., Carb. N Y 47, 2704 (2009). https://doi.org/10.1016/j.carbon.2009.05.028.

    Google Scholar 

  127. B. Anothumakkool, I. Agrawal, S.N. Bhange, R. Soni, O. Game, and S.B. Ogale, et al., ACS Appl. Mater. Interfaces. 8, 553 (2016). https://doi.org/10.1021/acsami.5b09579.

    Google Scholar 

  128. J.-Y. Lin, J.-H. Liao, and T.-C. Wei, Electrochem. Solid-State Lett. 14, D41 (2011). https://doi.org/10.1149/1.3533917.

    Google Scholar 

  129. I.-T. Chiu, C.-T. Li, C.-P. Lee, P.-Y. Chen, Y.-H. Tseng, and R. Vittal, et al., Nano Energy 22, 594 (2016). https://doi.org/10.1016/j.nanoen.2016.02.060.

    Google Scholar 

  130. K. Wu, L. Chen, C. Duan, J. Gao, and M. Wu, Mater. Des. 104, 298 (2016). https://doi.org/10.1016/j.matdes.2016.04.100.

    Google Scholar 

  131. M. Motlak, N.A.M. Barakat, A.G. El-Deen, A.M. Hamza, M. Obaid, and O.B. Yang, et al., Appl. Catal. A Gen. 501, 41 (2014). https://doi.org/10.1016/j.apcata.2015.04.030.

    Google Scholar 

  132. H. Seo, M.K. Son, N. Itagaki, K. Koga, and M. Shiratani, J. Power Sour. 307, 25 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.112.

    Google Scholar 

  133. H.-Y. Chen, J.-Y. Liao, B.-X. Lei, D.-B. Kuang, Y. Fang, and C.-Y. Su, Chem. Asian J. 7, 1795 (2012). https://doi.org/10.1002/asia.201200144.

    Google Scholar 

  134. Y. Xiao, G. Han, R. Wu, Y. Li, and M. Li, Electrochim. Acta 174, 770 (2015). https://doi.org/10.1016/j.electacta.2015.06.078.

    Google Scholar 

  135. H. Ma, J. Tian, S. Bai, X. Liu, and Z. Shan, Electrochim. Acta 137, 138 (2014). https://doi.org/10.1016/J.ELECTACTA.2014.06.022.

    Google Scholar 

  136. Y. Xiao, G. Han, Y. Li, M. Li, and J.-Y. Lin, J. Power Sour. 278, 149 (2015). https://doi.org/10.1016/J.JPOWSOUR.2014.12.068.

    Google Scholar 

  137. M. Zheng, J. Huo, B. Chen, Y. Tu, J. Wu, and L. Hu, et al., Sol. Energy 122, 727 (2015). https://doi.org/10.1016/J.SOLENER.2015.10.001.

    Google Scholar 

  138. J.S. Kim, V.D. Dao, L.L. Larina, and H.S. Choi, J. Alloys Compd. 682, 706 (2016). https://doi.org/10.1016/j.jallcom.2016.05.030.

    Google Scholar 

  139. E. Park, Y. Lee, V.D. Dao, N.T.D. Cam, and H.S. Choi, Synth. Met. 230, 97 (2017). https://doi.org/10.1016/j.synthmet.2017.06.002.

    Google Scholar 

  140. M. Motlak, N.A.M. Barakat, A.G. El-Deen, A.M. Hamza, M. Obaid, and O.-B. Yang, et al., Appl. Catal. A Gen. 501, 41 (2015). https://doi.org/10.1016/j.apcata.2015.04.030.

    Google Scholar 

  141. K.H. Bae, E. Park, V.D. Dao, and H.S. Choi, J. Alloys Compd. 702, 449 (2017). https://doi.org/10.1016/j.jallcom.2017.01.252.

    Google Scholar 

  142. L.-L. Shao, M. Chen, T.-Z. Ren, and Z.-Y. Yuan, J. Power Sour. 274, 791 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.107.

    Google Scholar 

  143. Y. Li, H. Wang, Q. Feng, G. Zhou, and Z.-S. Wang, ACS Appl. Mater. Interfaces. 5, 8217 (2013). https://doi.org/10.1021/am402353m.

    Google Scholar 

  144. Z. Li, F. Gong, G. Zhou, and Z.-S. Wang, J. Phys. Chem. C 117, 6561 (2013). https://doi.org/10.1021/jp401032c.

    Google Scholar 

  145. Y. Xiao, J. Wu, J. Lin, G. Yue, J. Lin, and M. Huang, et al., J. Mater. Chem. A 1, 13885 (2013). https://doi.org/10.1039/c3ta12972a.

    Google Scholar 

  146. G. Yue, J. Wu, J.-Y. Lin, Y. Xiao, S.-Y. Tai, and J. Lin, et al., Carb. N Y 55, 1 (2013). https://doi.org/10.1016/j.carbon.2012.10.045.

    Google Scholar 

  147. J. Gong, K. Sumathy, Q. Qiao, and Z. Zhou, Renew. Sustain. Energy Rev. 68, 234 (2017). https://doi.org/10.1016/J.RSER.2016.09.097.

    Google Scholar 

  148. V.H.V. Quy, E. Vijayakumar, P. Ho, J.-H. Park, J.A. Rajesh, and J. Kwon, et al., Electrochim. Acta 260, 716 (2018). https://doi.org/10.1016/J.ELECTACTA.2017.12.023.

    Google Scholar 

  149. M.Z. Iqbal and S. Khan, Sol. Energy 160, 130 (2018). https://doi.org/10.1016/J.SOLENER.2017.11.060.

    Google Scholar 

  150. R. Bajpai, S. Roy, N. Kulshrestha, J. Rafiee, N. Koratkar, and D.S. Misra, Nanoscale 4, 926 (2012). https://doi.org/10.1039/c2nr11127f.

    Google Scholar 

  151. Y.Y. Dou, G.R. Li, J. Song, and X.P. Gao, Phys. Chem. Chem. Phys. 14, 1339 (2012). https://doi.org/10.1039/c2cp23775j.

    Google Scholar 

  152. J. Velten, A.J. Mozer, D. Li, D. Officer, G. Wallace, and R. Baughman, et al., Nanotechnology 23, 85201 (2012). https://doi.org/10.1088/0957-4484/23/8/085201.

    Google Scholar 

  153. R. Afeesh, N.A.M. Barakat, S.S. Al-Deyab, A. Yousef, and H.Y. Kim, Colloids Surf. A Physicochem. Eng. Asp. 409, 21 (2012). https://doi.org/10.1016/j.colsurfa.2012.05.021.

    Google Scholar 

  154. N.A.M. Barakat and M. Motlak, Appl. Catal. B Environ. 154–155, 221 (2014). https://doi.org/10.1016/j.apcatb.2014.02.019.

    Google Scholar 

  155. N.A.M. Barakat, M. Motlak, A.A. Elzatahry, K.A. Khalil, and E.A.M. Abdelghani, Int. J. Hydrog. Energy 39, 305 (2014). https://doi.org/10.1016/j.ijhydene.2013.10.061.

    Google Scholar 

  156. H. Cai, Q. Tang, B. He, and P. Li, J. Power Sour. 258, 117 (2014). https://doi.org/10.1016/J.JPOWSOUR.2014.02.022.

    Google Scholar 

  157. O. Omelianovych, V.-D. Dao, L.L. Larina, and H.-S. Choi, Electrochim. Acta 211, 842 (2016). https://doi.org/10.1016/J.ELECTACTA.2016.06.094.

    Google Scholar 

  158. K. Ramasamy, B. Tien, P.S. Archana, and A. Gupta, Mater. Lett. 124, 227 (2014). https://doi.org/10.1016/J.MATLET.2014.03.046.

    Google Scholar 

  159. V.-D. Dao, Y. Choi, K. Yong, L.L. Larina, O. Shevaleevskiy, and H.-S. Choi, J. Power Sour. 274, 831 (2015). https://doi.org/10.1016/J.JPOWSOUR.2014.10.095.

    Google Scholar 

  160. Z. Zhang, Y. Yang, J. Gao, S. Xiao, C. Zhou, and D. Pan, et al., Mater Today Energy 7, 27 (2018). https://doi.org/10.1016/J.MTENER.2017.11.005.

    Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support from the National Natural Science Foundation of China (21705033) and the Natural Science Foundation of Henan Provincial Science and Technology Department (162300410043, 182102410077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Zaved H. Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.Z.H., Liu, X. Role of Nanostructured Photoanode and Counter Electrode on Efficiency Enhancement of DSSCs. J. Electron. Mater. 48, 4148–4165 (2019). https://doi.org/10.1007/s11664-019-07212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07212-8

Keywords

Navigation