Skip to main content
Log in

Tunable Optical Demultiplexer for Dense Wavelength Division Multiplexing Systems Using Graphene–Silicon Microring Resonators

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An ultracompact tunable optical dense wavelength division demultiplexer (DWDM) compatible with complementary metal–oxide–semiconductor technology is proposed, consisting of a central bus waveguide coupled to two drop waveguides through two ring resonators, all made of silicon (Si). Each Si ring resonator is topped by a graphene microribbon whose chemical potential can be tuned as desired. The center wavelength of each drop channel is determined by the resonant wavelength of the adjacent ring resonator, which in turn is tuned by modifying the conductivity of the graphene. Simulations show that the proposed structure with two graphene–Si ring resonators (GSRRs) having a chemical potential difference of 210 meV demultiplexes a broad optical signal into two narrow channels centered at about 1552.42 nm and 1552.85 nm (with a channel spacing of less than 0.43 nm), each emerging from one drop waveguide, with a transmission efficiency above 64%. The full-width at half-maximum values of the channels are 160 pm and 250 pm, providing quality factors of ∼ 9705 and 6209 with crosstalk of less than − 13.3 dB. By exchanging the chemical potentials of the GSRRs, the drop channels can be swapped dynamically without mechanical manipulation of the device. The proposed ultracompact graphene-based demultiplexer enables electrically tuned optical demultiplexing for DWDM systems as a potential alternative to the thermooptically tuned demultiplexers employed in long-haul optical communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Xiao, M.H. Khan, H. Shen, and M. Qi, Opt. Express 15, 7489 (2007).

    Article  Google Scholar 

  2. D. Nikolova, S. Rumley, D. Calhoun, Q. Li, R. Hendry, P. Samadi, and K. Bergma, Opt. Express 23, 1159 (2015).

    Article  CAS  Google Scholar 

  3. C. Xiong, W.H. Pernice, H.P. Wolfram, and H.X. Tang, Nano Lett. 12, 3562 (2012).

    Article  CAS  Google Scholar 

  4. I. Kiyat, A. Aydinli, and N. Dagli, Opt. Express 13, 1900 (2005).

    Article  Google Scholar 

  5. J. Huang, J. Yang, H. Zhang, J. Zhang, W. Wu, and S. Chang, IEEE Photonic Technol. Lett. 28, 2677 (2016).

    Article  CAS  Google Scholar 

  6. S. Soma, M.V. Sonth, and S.C. Gowre, J. Electron. Mater. 48, 7460 (2019).

    Article  CAS  Google Scholar 

  7. L. Yang, T. Hu, A. Shen, C. Pei, Y. Li, T. Dai, H. Yu, Y. Li, X. Jiang, and J. Yang, IEEE Photonic Technol. Lett. 26, 235 (2014).

    Article  Google Scholar 

  8. A.F. Levi, R.E. Slusher, S.L. McCall, J.L. Glass, S.J. Pearton, and R.A. Logan, Appl. Phys. Lett. 62, 561 (1993).

    Article  CAS  Google Scholar 

  9. X. Zheng, I. Shubin, G. Li, T. Pinguet, A. Mekis, J. Yao, H. Thacker, Y. Luo, J. Costa, R. Raj, and J.E. Cunningham, Opt. Express 18, 5151 (2010).

    Article  CAS  Google Scholar 

  10. D.T.H. Tan, A. Grieco, and Y. Fainman, Opt. Express 22, 10408 (2014).

    Article  CAS  Google Scholar 

  11. P. Dong, W. Qian, H. Liang, R. Shafiiha, X. Wang, D. Feng, G. Li, J.E. Cunningham, A.V. Krishnamoorthy, and M. Asghari, Opt. Express 18, 24504 (2010).

    Article  CAS  Google Scholar 

  12. Y. Zhuang, K. Ji, W. Zhou, and H. Chen, IEEE Photonic Technol. Lett. 28, 1669 (2016).

    Article  Google Scholar 

  13. B. Rostami-Dogolsara, M.K. Moravvej-Farshi, and F. Nazari, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 1468 (2016).

    Article  Google Scholar 

  14. B. Rostami-Dogolsara, M.K. Moravvej-Farshi, and F. Nazari, J. Mol. Liq. 281, 100 (2019).

    Article  CAS  Google Scholar 

  15. M. Bazgir, M. Jalalpour, F.B. Zarrabi, and A.S. Arezoomand, J. Electron. Mater. 49, 2173 (2020).

    Article  CAS  Google Scholar 

  16. T. Zhao, M. Asghari, and F. Mehdizadeh, J. Electron. Mater. 48, 2482 (2019).

    Article  CAS  Google Scholar 

  17. Y. Fan, X. Le Roux, A. Lupu, and A. de Lustrac, Photonics Res. 7, 359 (2019).

    Article  CAS  Google Scholar 

  18. M. Divya, P. Malliga, P. Sagayaraj, and A.J.A. Pragasam, J. Electron. Mater. 48, 5632 (2019).

    Article  CAS  Google Scholar 

  19. L. Liu, H. Guan, Y. Liu, L. Chang, Y. Kuang, M. Tan, Y. Yu, and Z. Li, IEEE Photonic Technol. Lett. 31, 451 (2019).

    Article  Google Scholar 

  20. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, Sci. Rep. 4, 5483 (2014).

    Article  Google Scholar 

  21. H. Wang, H. Zhao, G. Hu, S. Li, H. Su, and J. Zhang, Sci. Rep. 5, 18258 (2015).

    Article  CAS  Google Scholar 

  22. F. Xu, S. Das, Y. Gong, Q. Liu, H.-C. Chien, H.-Y. Chiu, J. Wu, and R. Hui, Appl. Phys. Lett. 106, 031109 (2015).

    Article  Google Scholar 

  23. G.W. Hanson, J. Appl. Phys. 103, 064302 (2008).

    Article  Google Scholar 

  24. J. Capmany, D. Domenech, and P. Muñoz, IEEE Photonics J. 7, 1 (2015).

    Article  CAS  Google Scholar 

  25. Y. Wang, C. Xue, Z. Zhang, H. Zheng, W. Zhang, and S. Yan, Sci. Rep. 6, 38891 (2016).

    Article  CAS  Google Scholar 

  26. X. Zhou, T. Zhang, X. Yin, L. Chen, and X. Li, IEEE Photonics J. 9, 1 (2017).

    Google Scholar 

  27. F. Nazari and M. Izadi, Phys. Lett. A 382, 1829 (2018).

    Article  CAS  Google Scholar 

  28. F. Nazari and M. Izadi, J. Opt. 21, 115801 (2019).

    Article  CAS  Google Scholar 

  29. S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and M.C.E. Yagoub, Opt. Commun. 427, 418 (2018).

    Article  CAS  Google Scholar 

  30. S. Asgari and N. Granpayeh, Opt. Commun. 393, 5 (2017).

    Article  CAS  Google Scholar 

  31. S. Asgari and T. Fabritius, Appl. Sci. 10, 1193 (2020).

    Article  CAS  Google Scholar 

  32. S. Asgari, N. Granpayeh, and Z.G. Kashani, IEEE Trans. Nanotechnol. 18, 42 (2018).

    Article  Google Scholar 

  33. G. Deng, T. Zhao, Z. Yin, and J. Yang, JOSA A 37, 903 (2020).

    Article  CAS  Google Scholar 

  34. M. Romagnoli, V. Sorianello, M. Midrio, F.H. Koppens, C. Huyghebaert, D. Neumaier, P. Galli, W. Templ, A. D’Errico, and A.C. Ferrari, Nat. Rev. Mater. 3, 392 (2018).

    Article  CAS  Google Scholar 

  35. A. Shen, C. Qiu, L.Z. Yang, T.G. Dai, Y.L. Hao, X.Q. Jiang, and J.Y. Yang, J. Opt. 17, 055801 (2015).

    Article  Google Scholar 

  36. P. Pan, J. An, Y. Wang, J. Zhang, L. Wang, Y. Qi, Q. Han, and X. Hu, Opt. Laser Technol. 75, 177 (2015).

    Article  Google Scholar 

  37. L. Chen, C.R. Doerr, P. Dong, and Y.K. Chen, Opt. Express 19, B946 (2011).

    Article  Google Scholar 

  38. U. Ralević, G. Isić, B. Vasić, D. Gvozdić, and R. Gajić, J. Phys. D Appl. Phys. 48, 355102 (2015).

    Article  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fakhroddin Nazari or Mohammad Kazem Moravvej-Farshi.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing for financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, A., Nazari, F. & Moravvej-Farshi, M.K. Tunable Optical Demultiplexer for Dense Wavelength Division Multiplexing Systems Using Graphene–Silicon Microring Resonators. J. Electron. Mater. 49, 7410–7419 (2020). https://doi.org/10.1007/s11664-020-08522-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08522-y

Keywords

Navigation