Skip to main content
Log in

Design of an Optical Switch and Sensor Based on a MIM Coupled Waveguide Using a DNA Composite

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A switchable surface plasmon polariton optical coupled waveguide made by exploiting a DNA composite is proposed in this paper. The switchable DNA element is used for controlling the electric field and transmission line shape. A multiband resonance is obtained for transmission to improve the optical sensing performance. Here, dumbbell-shaped cavity slots are utilized to control the effective length, with two resonances at 960 and 1260 nm for the low-conductivity mode, while there is one peak at 1590 nm for the high-conductivity mode. The DNA element is placed between two conductive silver lines, and thus acts as a switch. The structure can be controlled by switching between the DNA composite conductivity modes, and this ability can be considered for optical gates or switches at 960 and 1500 nm. The resulting switching factor is about 450 at 960 nm. The frequency shift and variation in full width at half maximum are evaluated as two functions for obtaining the sensitivity and figure of merit (FOM) of the refractive index. Therefore, this optical waveguide can be used both as an optical switch and as a refractive index (RI) sensor, with sensitivity of about 1260 nm/RIU and FOM of 120 RIU−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.Q. Le, J. Electron. Mater. 47, 2836 (2018).

    Article  CAS  Google Scholar 

  2. M.T. Nguyen, D.H. Nguyen, M.T. Pham, H.V. Pham, and C.D. Huynh, J. Electron. Mater. 48, 4970 (2019).

    Article  CAS  Google Scholar 

  3. R. Ning, J. Bao, Z. Chen, and J. Jiao, Electron. Mater. 48, 4733 (2019).

    Article  CAS  Google Scholar 

  4. X. Gao, L. Ning, Z. Liu, M. Li, P. Ye, P. Chen, and M. Li, Optik 127, 2444 (2016).

    Article  CAS  Google Scholar 

  5. S. Ebrahimi, R. Sabbaghi-Nadooshan, and M.B. Tavakoli, J. Nanophotonic. 13, 036014 (2019).

    Article  Google Scholar 

  6. Y. Zhang and M. Cui, J. Electron. Mater. 48, 1005 (2019).

    Article  CAS  Google Scholar 

  7. Z. Chen, H. Li, S. Zhan, Z. He, B. Li, and H. Xu, Opt. Commun. 356, 373 (2015).

    Article  CAS  Google Scholar 

  8. K.-H. Kim, S.-H. Kim, and M.-C. Bae, Appl. Opt. 54, 2710 (2015).

    Article  CAS  Google Scholar 

  9. F.B. Zarrabi, R. Hekmati, M. Bazgir, and S. Ebrahimi, Opt. Quant. Electron. 50, 452 (2018).

    Article  Google Scholar 

  10. Z. Chen, and L. Yu, IEEE Photon. J. 6, 4802208 (2014).

  11. Z. Zhang, L. Zhang, H. Li, and H. Chen, Appl. Phys. Lett. 104, 231114 (2014).

    Article  Google Scholar 

  12. J. Wen, J. Chen, K. Wang, B. Dai, Y. Huang, and D. Zhang, IEEE Photon. J. 8, 1 (2016).

    Google Scholar 

  13. Z. Chen, L. Yu, L. Wang, G. Duan, Y. Zhao, and J. Xiao, IEEE Photon. Technol. Lett. 27, 1695 (2015).

    Article  CAS  Google Scholar 

  14. X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, Opt. Commun. 427, 326 (2018).

    Article  CAS  Google Scholar 

  15. Z. Chen, L. Cui, X. Song, L. Yu, and J. Xiao, Opt. Commun. 340, 1 (2015).

    Article  CAS  Google Scholar 

  16. F.F. Qin, J.J. Xiao, Z.Z. Liu, Q. Zhang, and I.E.E.E. Trans, Microw. Theory Techn. 64, 1186 (2016).

    Article  Google Scholar 

  17. X. Han, T. Wang, B. Liu, Y. He, and Y. Zhu, IEEE Photon. Technol. Lett. 28, 347 (2016).

    Article  CAS  Google Scholar 

  18. Y. Wang, S. Li, Y. Zhang, and L. Yu, IEEE Photon J. 8, 4502608 (2016).

    Google Scholar 

  19. F.B. Zarrabi, M. Bazgir, and R. Hekmati, IEEE Photon. Technol. Lett. 31, 779 (2019).

    Article  CAS  Google Scholar 

  20. A. Emboras, I. Goykhman, B. Desiatov, N. Mazurski, L. Stern, J. Shappir, and U. Levy, Nano Lett. 13, 6151 (2013).

    Article  CAS  Google Scholar 

  21. S. Qin, R. Dong, X. Yan, and Q. Du, Org. Electron. 22, 147 (2015).

    Article  CAS  Google Scholar 

  22. T. Nurmohammadi, K. Abbasian, and R. Yadipour, Opt. Commun. 410, 142 (2018).

    Article  CAS  Google Scholar 

  23. F.B. Zarrabi, M. Bazgir, S. Ebrahimi, and A.S. Arezoomand, J. Electromagnet. Waves 31, 1444 (2017).

    Article  Google Scholar 

  24. A. Farmani, A. Mir, M. Bazgir, and F.B. Zarrabi, Phys. E Low-dimens. Syst. Nanostruct. 104, 233 (2018).

    Article  CAS  Google Scholar 

  25. S. Ebrahimi, R. Sabbaghi-Nadooshan, and M.B. Tavakoli, Opt. Quant. Electron. 50, 324 (2018).

    Article  Google Scholar 

  26. S. Ebrahimi, R. Sabbaghi-Nadooshan, and M.B. Tavakoli, Opt. Quant. Electron. 50, 196 (2018).

    Article  Google Scholar 

  27. M.R. Soheilifar and F.B. Zarrabi, Opt. Quant. Electron. 51, 155 (2019).

    Article  Google Scholar 

  28. G. Zhou, B. Sun, A. Zhou, B. Wu, and H. Huang, Curr. Appl. Phys. 17, 235 (2017).

    Article  Google Scholar 

  29. Z.X. Lim and K.Y. Cheong, Phys. Chem. Chem. Phys. 17, 26833 (2015).

    Article  CAS  Google Scholar 

  30. S. Watson, A.R. Pike, J. Pate, A. Houlton, and B.R. Horrocks, Nanoscale 6, 4027 (2014).

    Article  CAS  Google Scholar 

  31. Z. Kutnjak, G. Lahajnar, C. Filipič, R. Podgornik, L. Nordenskiöld, N. Korolev, and A. Rupprecht, Phys. Rev. E 71, 041901 (2005).

    Article  Google Scholar 

  32. A. Pannipitiya, I.D. Rukhlenko, and M. Premaratne, JOSA B 28, 2820 (2011).

    Article  CAS  Google Scholar 

  33. E.D. Palik, Academic Press Handbook Series (New York: Academic Press, 1985).

    Google Scholar 

  34. F. El-Diasty and F. Abdel-Wahab, Mater. Sci. Eng. C 55, 524 (2015).

    Article  CAS  Google Scholar 

  35. Y. Qi, B. Sun, G. Fu, T. Li, S. Zhu, L. Zheng, S. Mao, X. Kan, M. Lei, and Y. Chen, Chem. Phys. 516, 168 (2019).

    Article  CAS  Google Scholar 

  36. Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, Sensors 18, 116 (2018).

    Article  Google Scholar 

  37. G. Zheng, X. Zou, Y. Chen, L. Xu, and W. Rao, Opt. Mater. 66, 171 (2017).

    Article  CAS  Google Scholar 

  38. L. Liu, S.-X. Xia, X. Luo, X. Zhai, Y.-B. Yu, and L.-L. Wang, Opt. Commun. 418, 27 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdows B. Zarrabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazgir, M., Jalalpour, M., Zarrabi, F.B. et al. Design of an Optical Switch and Sensor Based on a MIM Coupled Waveguide Using a DNA Composite. J. Electron. Mater. 49, 2173–2178 (2020). https://doi.org/10.1007/s11664-019-07902-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07902-3

Keywords

Navigation