Skip to main content
Log in

An All-Optical Digital 2-to-1 Multiplexer Using Photonic Crystal-Based Nonlinear Ring Resonators

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, we proposed a structure to realize an all-optical digital multiplexer. The proposed structure had two inputs, one control and one output port. Using the control port, one can decide which input port can be connected to the output port. The proposed structure consisted of two nonlinear photonic crystal ring resonators, L-shaped and T-shaped, and a straight waveguide. Total footprint and maximum delay time of the proposed structure were 479 μm2 and 3 ps, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).

    Article  Google Scholar 

  2. K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J.O. Kim, S.J. Lee, A. Urbas, and J. Zhou, Adv. Opt. Mater. 3, 1779 (2015).

    Article  Google Scholar 

  3. M.-S. Park, K. Bhattarai, D.-K. Kim, S.-W. Kang, J.O. Kim, J. Zhou, W.-Y. Jang, M. Noyola, A. Urbas, Z. Ku, and S.J. Lee, Opt. Express 22, 30161 (2014).

    Article  Google Scholar 

  4. A. Chizari, S. Abdollahramezani, M.V. Jamali, and J.A. Salehi, Opt. Lett. 41, 3451 (2016).

    Article  Google Scholar 

  5. M. Noori, M. Soroosh, and H. Baghban, Photonic Nanostruct. Fundam. Appl. 19, 1 (2016).

    Article  Google Scholar 

  6. M. Noori and M. Soroosh, Opt. Int. J. Light Electron. Opt. 126, 4775 (2015).

    Article  Google Scholar 

  7. B.F. Diaz-Valencia and J.M. Calero, Phys. C Supercond. 505, 74 (2014).

    Article  Google Scholar 

  8. D. Liu, Y. Gao, A. Tong, and S. Hu, Phys. Lett. A 379, 214 (2015).

    Article  Google Scholar 

  9. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, Opt. Lett. 30, 2575 (2005).

    Article  Google Scholar 

  10. S. Serajmohammadi, H. Alipour-Banaei, and F. Mehdizadeh, Opt. Quantum Electron. 47, 1109 (2014).

    Article  Google Scholar 

  11. M. Danaie and H. Kaatuzian, Opt. Quantum Electron. 44, 27 (2012).

    Article  Google Scholar 

  12. S. Afzal, V. Ahmadi, and M. Ebnali-Heidari, J. Opt. Soc. Am. B 30, 2535 (2013).

    Article  Google Scholar 

  13. T.A. Moniem, Quantum Electron. 47, 169 (2017).

    Article  Google Scholar 

  14. F. Mehdizadeh, H. Alipour-banaei, and S. Serajmohammadi, J. Mod. Opt. 62, 430 (2017).

    Google Scholar 

  15. M. Neisy, M. Soroosh, and K. Ansari-Asl, Photonic Netw. Commun. 35, 245 (2017).

    Article  Google Scholar 

  16. F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, Opt. Int. J. Light Electron. Opt. 156, 701 (2018).

    Article  Google Scholar 

  17. M. Hassangholizadeh-Kashtiban, R. Sabbaghi-Nadooshan, and H. Alipour-Banaei, Opt. Int. J. Light Electron Opt. 126, 2368 (2015).

    Article  Google Scholar 

  18. S. Serajmohammadi, J. Opt. Commun. 37, 115 (2016).

    Article  Google Scholar 

  19. A. Salmanpour, S. Mohammadnejad, and P.T. Omran, Opt. Quantum Electron. 47, 3689 (2015).

    Article  Google Scholar 

  20. Z. Mohebbi, N. Nozhat, and F. Emami, Opt. Commun. 355, 130 (2015).

    Article  Google Scholar 

  21. S. Khosravi and M. Zavvari, Photonic Netw. Commun. 35, 122 (2018).

    Article  Google Scholar 

  22. T. Daghooghi, M. Soroosh, and K. Ansari-Asl, Photonic Netw. Commun. 35, 335 (2018).

    Article  Google Scholar 

  23. T. Daghooghi, M. Soroosh, and K. Ansari-Asl, Appl. Opt. 57, 2250 (2018).

    Article  Google Scholar 

  24. T.A. Moniem, J. Mod. Opt. 62, 1643 (2015).

    Article  Google Scholar 

  25. A. Salimzadeh and H. Alipour-Banaei, Opt. Commun. 410, 793 (2018).

    Article  Google Scholar 

  26. A. Rahmani and F. Mehdizadeh, Opt. Quantum Electron. 50, 30 (2017).

    Article  Google Scholar 

  27. F. Cheraghi, M. Soroosh, and G. Akbarizadeh, Superlatt. Microstruct. 113, 359 (2017).

    Article  Google Scholar 

  28. M.M. Karkhanehchi, F. Parandin, and A. Zahedi, Photonic Netw. Commun. 33, 159 (2017).

    Article  Google Scholar 

  29. A. Andalib, Photonic Netw. Commun. 35, 392 (2018).

    Article  Google Scholar 

  30. F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, IEEE Photonics J. 9, 1 (2017).

    Article  Google Scholar 

  31. F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, Opt. Quantum Electron. 49, 38 (2017).

    Article  Google Scholar 

  32. F. Mehdizadeh, M. Soroosh, H. Alipour-Banaei, and E. Farshidi, Appl. Opt. 56, 1799 (2017).

    Article  Google Scholar 

  33. A. Tavousi and M.A. Mansouri-Birjandi, Superlatt. Microstruct. 114, 23 (2018).

    Article  Google Scholar 

  34. A. Tavousi, M.A. Mansouri-Birjandi, and M. Saffari, Phys. E Low Dimens. Syst. Nanostruct. 83, 101 (2016).

    Article  Google Scholar 

  35. F. Mehdizadeh, H. Alipour-Banaei, and S. Serajmohammadi, J. Opt. 15, 075401 (2013).

    Article  Google Scholar 

  36. B. Youssefi, M.K. Moravvej-Farshi, and N. Granpayeh, Opt. Commun. 285, 3228 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Mehdizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Asghari, M. & Mehdizadeh, F. An All-Optical Digital 2-to-1 Multiplexer Using Photonic Crystal-Based Nonlinear Ring Resonators. J. Electron. Mater. 48, 2482–2486 (2019). https://doi.org/10.1007/s11664-019-06947-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-06947-8

Keywords

Navigation