Skip to main content
Log in

Thermoelectric Properties of Thiospinel-Type CuCo2S4

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Eco-friendly thiospinel-type CuCo2S4 material has been investigated as a potential thermoelectric material. The temperature, T, dependence of electrical resistivity, ρ, of CuCo2S4 shows a metallic conductivity (∂ρ/∂T > 0) and a strong degenerate state, in the range of 323–723 K. Besides a high carrier concentration consistent with the metallic nature, its Hall mobility is still unexpectedly estimated to be 8.5 cm2 V−1 s−1 at room temperature. The positive Seebeck coefficient S confirms a p-type carrier conduction. Similar to most of the transition-metal spinel chalcogenides, the S value is very low, 12–36 μV K−1 at 323–723 K. As a result, a relatively low power factor PF&!thinsp; ∼ 0.35 mW m−1 K−2 was obtained at 723 K. Due to the dominant role of electronic thermal conductivity, the total thermal conductivity к was high and increases with a linear dependence on T. However, the intrinsic lattice conductivity кl was relatively low, ranging from 1.48 W m−1 K−1 at 323 K to 0.57 W m−1 K−1 at 723 K. It follows there is a T−1 dependence indicative of Umklapp type phonon–phonon interaction. Importantly, the intrinsically low кl in CuCo2S4 is attributed to multiple mechanisms, mainly including the large unit cell with primarily octahedral coordination, the high distortion and complexity of the structure, and additional interfacial thermal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. Disalvo, Science 285, 703 (1999).

    Article  Google Scholar 

  2. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC/Taylor & Francis, 2005), pp. 1–5.

    Book  Google Scholar 

  3. C. Xiao, Z. Li, K. Li, P. Huang, and Y. Xie, Acc. Chem. Res. 47, 1287 (2014).

    Article  Google Scholar 

  4. K. Vandaele, S.J. Watzman, B. Flebus, A. Prakash, Y. Zheng, S.R. Boona, and J.P. Heremans, Mater. Today Phys. 1, 39 (2017).

    Article  Google Scholar 

  5. T. Mori, Small 13, 1702013 (2017).

    Article  Google Scholar 

  6. J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).

    Article  Google Scholar 

  7. Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. Macdonald, R.L.J. Qiu, H.J. Gao, and X.P.A. Gao, Nano Lett. 12, 6492 (2012).

    Article  Google Scholar 

  8. Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).

    Article  Google Scholar 

  9. J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009).

    Article  Google Scholar 

  10. L. Pan, S. Mitra, L.D. Zhao, Y. Shen, Y. Wang, C. Felser, and D. Berardan, Adv. Funct. Mater. 26, 5149 (2016).

    Article  Google Scholar 

  11. H. Wang, A.D. Lalonde, Y. Pei, and G.J. Snyder, Adv. Funct. Mater. 23, 1586 (2013).

    Article  Google Scholar 

  12. Y. He, P. Lu, X. Shi, F.F. Xu, T.S. Zhang, G.J. Snyder, C. Uher, and L.D. Chen, Adv. Mater. 27, 3639 (2015).

    Article  Google Scholar 

  13. L.D. Zhao, J. He, S. Hao, C.I. Wu, T.P. Hogan, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 134, 16327 (2012).

    Article  Google Scholar 

  14. S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 1873 (2006).

    Article  Google Scholar 

  15. K. Kurosaki, A. Kosuga, H. Muta, M. Uno, and S. Yamanaka, Appl. Phys. Lett. 87, 804 (2005).

    Article  Google Scholar 

  16. S. Lin, W. Li, S. Li, X. Zhang, Z. Chen, Y. Xu, Y. Chen, and Y. Pei, Joule 1, 816 (2017).

    Article  Google Scholar 

  17. Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, and G.J. Snyder, Adv. Mater. 26, 3974 (2014).

    Article  Google Scholar 

  18. D.P. Spitzer, J. Phys. Chem. Solids 31, 19 (1970).

    Article  Google Scholar 

  19. T. Gron, K. Barner, C. Kleeberg, and I. OkonskaKozlowska, Phys. B 225, 191 (1996).

    Article  Google Scholar 

  20. T. Gron, A. Krajewski, J. Kusz, E. Malicka, I. Okonska-Kozlowska, and A. Waskowska, Phys. Rev. B 71, 035208 (2005).

    Article  Google Scholar 

  21. K. Balcerek, C. Marucha, R. Wawryk, T. Tyc, N. Matsumoto, and S. Nagata, Philos. Mag. B 79, 1021 (1999).

    Article  Google Scholar 

  22. H. Duda, I. Jendrzejewska, T. Gron, S. Mazur, P. Zajdel, and A. Kita, J. Phys. Chem. Solids 68, 80 (2007).

    Article  Google Scholar 

  23. A.U. Khan, R.A.R.A. Orabi, A. Pakdel, J.B. Vaney, B. Fontaine, R. Gautier, J.F. Halet, S. Mitani, and T. Mori, Chem. Mater. 29, 2988 (2017).

    Article  Google Scholar 

  24. T. Oda, M. Shirai, N. Suzuki, and K. Motizuki, J. Phys.: Condens. Matter 7, 4433 (1995).

    Google Scholar 

  25. B. Li, F. Yuan, G. He, X. Han, X. Wang, J. Qin, Z.X. Guo, X. Lu, Q. Wang, and I.P. Parkin, Adv. Funct. Mater. 27, 1606218 (2017).

    Article  Google Scholar 

  26. X. Huang, G. Deng, L. Liao, W. Zhang, G. Guan, F. Zhou, Z. Xiao, R. Zou, Q. Wang, and J. Hu, Nanoscale 9, 2626 (2017).

    Article  Google Scholar 

  27. S. Cheng, T. Shi, C. Chen, Z. Yan, Y. Huang, X. Tao, J. Li, G. Liao, and Z. Tang, Sci. Rep. 7, 6681 (2017).

    Article  Google Scholar 

  28. F.J. Disalvo and J.V. Waszczak, Phys. Rev. B 26, 2501 (1982).

    Article  Google Scholar 

  29. N. Doebelin and R. Kleeberg, J. Appl. Crystallogr. 48, 1573 (2015).

    Article  Google Scholar 

  30. E. Riedel and E. Horvath, Mater. Res. Bull. 8, 973 (1973).

    Article  Google Scholar 

  31. A.N. Buckley, W.M. Skinner, S.L. Harmer, A. Pring, and L.J. Fan, Geochim. Cosmochim. Acta 73, 4452 (2009).

    Article  Google Scholar 

  32. A.M. Wiltrout, C.G. Read, E.M. Spencer, and R.E. Schaak, Inorg. Chem. 55, 221 (2015).

    Article  Google Scholar 

  33. R.J. Bouchard, P.A. Russo, and A. Wold, Inorg. Chem. 4, 685 (1965).

    Article  Google Scholar 

  34. D. Zhang, J.Y. Yang, Q.H. Jiang, Z.W. Zhou, X. Li, J.W. Xin, A. Basit, Y.Y. Ren, and X. He, Nano Energy 36, 156 (2017).

    Article  Google Scholar 

  35. G.J. Snyder, T. Caillat, and J.P. Fleurial, Mater. Res Innov. 5, 67 (2001).

    Article  Google Scholar 

  36. N. Tsujii and T. Mori, Appl. Phys. Express 6, 043001 (2013).

    Article  Google Scholar 

  37. R. Ang, A.U. Khan, N. Tsujii, K. Takai, R. Nakamura, and T. Mori, Angew. Chem., Int. Ed. 54, 12909 (2015).

    Article  Google Scholar 

  38. H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, and T. Mori, Mater. Today Phys. 3, 85 (2017).

    Article  Google Scholar 

  39. H. Wang, E. Schechtel, Y. Pei, and G.J. Snyder, Adv. Energy Mater. 3, 488 (2013).

    Article  Google Scholar 

  40. M. Beaumale, T. Barbier, Y. Breard, S. Hebert, Y. Kinemuchi, and E. Guilmeau, J. Appl. Phys. 115, 043704 (2014).

    Article  Google Scholar 

  41. X.X. Xu, H.W. Zhao, X.H. Hu, L. Pan, C.C. Chen, D.X. Li, and Y.F. Wang, J. Alloys Compd. 728, 701 (2017).

    Article  Google Scholar 

  42. W. Kim, J. Mater. Chem. C 3, 10336 (2015).

    Article  Google Scholar 

  43. E.S. Toberer, A.F. May, and G.J. Snyder, Chem. Mater. 22, 624 (2010).

    Article  Google Scholar 

  44. Y.L. Pei, C. Chang, Z. Wang, M.J. Yin, M.H. Wu, G.J. Tan, H.J. Wu, Y.X. Chen, L. Zheng, S.K. Gong, T.J. Zhu, X.B. Zhao, L. Huang, J.Q. He, M.G. Kanatzidis, and L.D. Zhao, J. Am. Chem. Soc. 138, 16364 (2016).

    Article  Google Scholar 

  45. D.S. Sanditov and V.N. Belomestnykh, Tech. Phys. 56, 1619 (2011).

    Article  Google Scholar 

  46. P. Qiu, T. Zhang, Y. Qiu, X. Shi, and L. Chen, Energy Environ. Sci. 7, 4000 (2014).

    Article  Google Scholar 

  47. X. Shen, C.C. Yang, Y. Liu, G. Wang, H. Tan, Y.H. Tung, G. Wang, X. Lu, J. He, X. Zhou, and A.C.S. Appl, Mater. Interfaces 11, 2168 (2019).

    Article  Google Scholar 

  48. D.T. Morelli, V. Jovovic, and J.P. Heremans, Phys. Rev. Lett. 101, 035901 (2008).

    Article  Google Scholar 

  49. T.M. Tritt, Thermal Conductivity: Theory, Properties, and Applications (New York: Springer, 2004), pp. 1–2.

    Book  Google Scholar 

  50. L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  Google Scholar 

  51. O. Delaire, J. Ma, K. Marty, A.F. May, M.A. Mcguire, M. Du, D.J. Singh, A. Podlesnyak, G. Ehlers, and M.D. Lumsden, Nat. Mater. 10, 614 (2011).

    Article  Google Scholar 

  52. X. Chen, H.D. Zhou, A. Kiswandhi, I. Miotkowski, Y.P. Chen, P.A. Sharma, A.L.L. Sharma, M.A. Hekmaty, D. Smirnov, and Z. Jiang, Appl. Phys. Lett. 99, 261912 (2011).

    Article  Google Scholar 

  53. X. Shi, L. Chen, and C. Uher, Int. Mater. Rev. 61, 379 (2016).

    Article  Google Scholar 

  54. W.G. Zeier, A. Zevalkink, Z.M. Gibbs, G. Hautier, M.G. Kanatzidis, and G.J. Snyder, Angew. Chem., Int. Ed. 55, 6826 (2016).

    Article  Google Scholar 

  55. D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B: Condens. Matter 46, 6131 (1992).

    Article  Google Scholar 

  56. G.A. Slack, Solid State Phys. 34, 1 (1979).

    Article  Google Scholar 

  57. Y.F. Wang, K. Fujinami, R.Z. Zhang, C.L. Wan, N. Wang, Y.S. Ba, and K. Koumoto, Appl. Phys. Express 3, 031101 (2010).

    Article  Google Scholar 

  58. Eric J. Skoug, Jeffrey D. Cain, and Donald T. Morelli, J. Electron. Mater. 41, 1232 (2012).

    Article  Google Scholar 

  59. W. Yao, D. Yang, Y. Yan, K. Peng, H. Zhan, A. Liu, X. Lu, G. Wang, X. Zhou, and A.C.S. Appl, Mater. Interfaces 9, 10595 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China under Grant Nos. 51272103, 51672127 and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, Y., Pan, L., Chen, C. et al. Thermoelectric Properties of Thiospinel-Type CuCo2S4. J. Electron. Mater. 48, 4179–4187 (2019). https://doi.org/10.1007/s11664-019-07182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07182-x

Keywords

Navigation