Skip to main content
Log in

Improved Thermoelectric Performance in Cu-Based Ternary Chalcogenides Using S for Se Substitution

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Cu-based ternary chalcogenide semiconductors are a promising class of p-type thermoelectric materials. Here we show that S for Se substitution is a promising route for improving the thermoelectric performance of these compounds, in particular for Cu3SbSe4 and Cu2SnSe3. Phonon scattering due to the combined effects of the atomic mass and size difference between S and Se produces a significant reduction in lattice thermal conductivity over a wide temperature range, and limits the phonon mean free path to its minimum possible value at high temperature. The small electronegativity difference between S and Se is ideal for conserving carrier mobility, as demonstrated by the reasonably large hole mobility in the disordered Cu3Sb(Se1−x S x )4 compounds. These effects along with the low-cost, environmentally benign nature of S, make S for Se substitution a simple yet effective method of improving the thermoelectric performance of Cu-based ternary selenides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  CAS  Google Scholar 

  2. E.J. Skoug, J.D. Cain, and D.T. Morelli, Appl. Phys. Lett. 98, 261911 (2011).

    Article  Google Scholar 

  3. X. Shi, L. Xi, J. Fan, W. Zhang, and L. Chen, Chem. Mater. 22, 6029 (2010).

    Article  CAS  Google Scholar 

  4. L.I. Berger and V.D. Prochukhan, Ternary Diamond-Like Semiconductors (New York, London: Consultants Bureau, 1969), p. 64.

    Google Scholar 

  5. G.A. Slack, Solid State Physics, ed. H. Ehrenreich, F. Steitz, and D. Turnbull (New York: Academic Press, 1979), vol. 34, pp. 1–71.

  6. E.J. Skoug, J.D. Cain, D.T. Morelli, M. Kirkham, P. Majsztrik, and E. Lara-Curzio, J. Appl. Phys. 110, 023501 (2011).

    Article  Google Scholar 

  7. A. Pfitzner, Z. Kristallogr. 209, 685 (1995).

    Article  Google Scholar 

  8. G.E. Delgado, A.J. Mora, G. Marcano, and C. Rincon, Mater. Res. Bull. 38, 1949 (2003).

    Article  CAS  Google Scholar 

  9. P.G. Klemens, Proc. Phys. Soc. A68, 1113 (1955).

    Google Scholar 

  10. J. Callaway and H.C. Von Baeyer, Phys. Rev. 120, 1149 (1960).

    Article  CAS  Google Scholar 

  11. N.W. Ashcroft, N.D. Merman, Solid State Physics (Philadelphia: Saunders College, 1976), p. 457.

  12. J. Yang, G.P. Meisner, and L. Chen, Appl. Phys. Lett. 85, 1140 (2004).

    Article  CAS  Google Scholar 

  13. G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, New York: CRC Press, 1995), p. 407.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Skoug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skoug, E.J., Cain, J.D. & Morelli, D.T. Improved Thermoelectric Performance in Cu-Based Ternary Chalcogenides Using S for Se Substitution. J. Electron. Mater. 41, 1232–1236 (2012). https://doi.org/10.1007/s11664-012-1969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1969-x

Keywords

Navigation