Skip to main content
Log in

A First-Principles Theoretical Study on the Thermoelectric Properties of the Compound Cu5AlSn2S8

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A new compound of Cu5AlSn2S8, which contained earth-abundant and environment-friendly elements and had a diamond-like crystal structure, was designed, and its electronic structure and thermoelectric transport properties from 300 K to 700 K were investigated by first-principles calculations, Boltzmann transport equations, and a modified Slack’s model. The largest power factors of Cu5AlSn2S8 at 700 K were 47.5 × 1010 W m−1 K−2 s−1 and 14.7 × 1010 W m−1 K−2 s−1 for p- and n-type semiconductors, respectively. The lattice thermal conductivity of Cu5AlSn2S8 was calculated with its shear modulus and isothermal bulk modulus, which were also obtained by first-principles calculations. The lattice thermal conductivity was 0.9–2.2 W m−1 K−1 from 300 K to 700 K, relatively low among thermoelectric compounds. This theoretical study showed that Cu5AlSn2S8 could be a potential thermoelectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Zhu, X. Lin, J. Liu, B. Fauqué, Q. Tao, C. Yang, Y. Shi, and K. Behnia, Phys. Rev. Lett. 114, 176601 (2015).

    Article  Google Scholar 

  2. D. Sánchez and R. López, Phys. Rev. Lett. 110, 026804 (2013).

    Article  Google Scholar 

  3. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and J. Snyder, Nat. Mater. 11, 422 (2012).

    Article  Google Scholar 

  4. T. Jaeger, C. Mix, M. Schwall, X. Kozina, J. Barth, B. Balke, M. Finsterbusch, Y.U. Idzerda, C. Felser, and G. Jakob, Thin Solid Films 520, 1010 (2011).

    Article  Google Scholar 

  5. Q. Yao, Q. Wang, L. Wang, and L. Chen, Energy Environ. Sci. 7, 3801 (2014).

    Article  Google Scholar 

  6. M. Tan, Y. Deng, and Y. Hao, Energy 70, 143 (2014).

    Article  Google Scholar 

  7. D. Li, L. Li, D. Liu, and J. Li, Phys. Status Solidi (RRL) 6, 268–270 (2012).

    Article  Google Scholar 

  8. J. Xie, C. Lee, M. Wang, Y. Liu, and H. Feng, J. Micromech. Microeng. 19, 125029 (2009).

    Article  Google Scholar 

  9. L. Zhao, S. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).

    Article  Google Scholar 

  10. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  11. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).

    Article  Google Scholar 

  12. Y. Zhou, L. Li, Q. Tan, and J. Li, J. Alloys Compd. 590, 362 (2014).

    Article  Google Scholar 

  13. P.H. Le, C. Liao, C.W. Luo, and J. Leu, J. Alloys Compd. 615, 546 (2014).

    Article  Google Scholar 

  14. M. Takiishi, S. Tanaka, K. Miyazaki, and H. Tsukamoto, J. Appl. Phys. 101, 074301 (2007).

    Article  Google Scholar 

  15. D. Liu, J. Li, C. Chen, B. Zhang, and L. Li, J. Micromech. Microeng. 20, 125031 (2010).

    Article  Google Scholar 

  16. Y. Wu, J. Nylén, C. Naseyowma, N. Newman, F.J. Garcia-Garcia, and U. Häussermann, Chem. Mater. 21, 151 (2009).

    Article  Google Scholar 

  17. H.B. Lee, J.H. We, H.J. Yang, K. Kim, K.C. Choi, and B.J. Cho, Thin Solid Films 519, 5441 (2011).

    Article  Google Scholar 

  18. X. Song, P.H.M. Böttger, O.B. Karlsen, T.G. Finstad, and J. Taftø, Phys. Scr. 2012, 014001 (2012).

    Article  Google Scholar 

  19. T. Ueda, C. Okamura, Y. Noda, and K. Hasezaki, Mater. Trans. 50, 2473 (2009).

    Article  Google Scholar 

  20. J.W. Sharp, E.C. Jones, R.K. Williams, P.M. Martin, and B.C. Sales, J. Appl. Phys. 78, 1013 (1995).

    Article  Google Scholar 

  21. Y. Kawaharada, K. Kurosaki, M. Uno, and S. Yamanaka, J. Alloys Compd. 315, 193 (2001).

    Article  Google Scholar 

  22. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Müller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Adv. Funct. Mater. 14, 1189 (2004).

    Article  Google Scholar 

  23. J.P.A. Makongo, D.K. Misra, X. Zhou, A. Pant, M.R. Shabetai, X. Su, C. Uher, K.L. Stokes, and P.F.P. Poudeu, J. Am. Chem. Soc. 133, 18843 (2011).

    Article  Google Scholar 

  24. O. Apple, M. Schwall, D. Mogilyansky, M. Köhne, B. Balke, and Y. Gelbstein, J. Electron. Mater. 42, 1340 (2013).

    Article  Google Scholar 

  25. K. Kirievsky, Y. Gelbstein, and D. Fuks, J. Solid State Chem. 203, 247 (2013).

    Article  Google Scholar 

  26. Y. Zhou, Q. Tan, J. Zhu, S. Li, C. Liu, Y. Lei, and L. Li, J. Electron. Mater. 44, 1957 (2015).

    Article  Google Scholar 

  27. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).

    Article  Google Scholar 

  28. Y.Q. Cao, T.J. Zhu, and X.B. Zhao, J. Phys. D: Appl. Phys. 42, 015406 (2009).

    Article  Google Scholar 

  29. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 550 (2008).

    Article  Google Scholar 

  30. T.J. Zhu, Y.Q. Liu, and X.B. Zhao, Mater. Res. Bull. 43, 2850 (2008).

    Article  Google Scholar 

  31. H. Liu, X. Yuan, P. Lu, X. Shi, F. Xu, Y. He, Y. Tang, S. Bai, W. Zhang, L. Chen, Y. Lin, L. Shi, H. Lin, X. Gao, X. Zhang, H. Chi, and C. Uher, Adv. Mater. 25, 6607 (2013).

    Article  Google Scholar 

  32. B. Yua, W. Liua, S. Chen, H. Wang, H. Wang, G. Chen, and Z. Ren, Nano Energy 1, 472 (2012).

    Article  Google Scholar 

  33. S. Ballikaya, H. Chi, J.R. Salvador, and C. Uher, J. Mater. Chem. A 1, 12478 (2013).

    Article  Google Scholar 

  34. H. Ohta, K. Sugiura, and K. Koumoto, Inorg. Chem. 47, 8429 (2008).

    Article  Google Scholar 

  35. R. Funahashi, M. Mikami, T. Mihrar, S. Urata, and N. Ando, J. Appl. Phys. 99, 066117 (2006).

    Article  Google Scholar 

  36. E.S. Reddy, J.G. Noudem, S. Hebert, and C. Goupil, J. Phys. D: Appl. Phys. 38, 3751 (2005).

    Article  Google Scholar 

  37. J. Moon, Y. Masuda, W. Seo, and K. Koumoto, Mater. Lett. 48, 225 (2001).

    Article  Google Scholar 

  38. M. Chabinyc, Nat. Mater. 13, 119 (2014).

    Article  Google Scholar 

  39. G.-H. Kim, L. Shao, K. Zhang, and K.P. Pipe, Nat. Mater. 23, 719 (2013).

    Article  Google Scholar 

  40. Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu, and D. Zhu, Adv. Mater. 24, 932 (2012).

    Article  Google Scholar 

  41. J.H. We, S.J. Kim, and B.J. Cho, Energy 73, 506 (2014).

    Article  Google Scholar 

  42. L.I. Berger and B.D. Prochukhan, Thernary Diamond-Like Semiconductors (New York: Consultants Bureau, 1969), pp. 55–62.

    Google Scholar 

  43. L. Xi, Y.B. Zhang, X.Y. Shi, J. Yang, X. Shi, L.D. Chen, and W. Zhang, Phy. Rev. B 86, 155201 (2012).

    Article  Google Scholar 

  44. H. Yang, L.A. Jauregui, G. Zhang, Y.P. Chen, and Y. Wu, Nano Lett. 12, 540 (2012).

    Article  Google Scholar 

  45. J. Fan, W. Schnelle, I. Antonyshyn, I. Veremchuk, W. Carrillo-Cabrera, X. Shi, Y. Grin, and L. Chen, Dalton Trans. 43, 16788 (2014).

    Article  Google Scholar 

  46. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  47. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  48. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  49. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  50. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  51. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  52. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  53. J.P. Poirier, Introduction to the Physics of the Earth’s Interior (Cambridge: Cambridge University Press, 1991), pp. 4–10.

    Google Scholar 

  54. Y. Zhang, X. Yuan, X. Sun, B. Shih, P. Zhang, and W. Zhang, Phys. Rev. B 84, 075127 (2011).

    Article  Google Scholar 

  55. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  56. C. Persson, J. Appl. Phys. 107, 053710 (2010).

    Article  Google Scholar 

  57. W. Bao and M. Ichimura, Int. J. Photoenergy 2012, 1 (2012).

    Article  Google Scholar 

  58. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  59. Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125 (2012).

    Article  Google Scholar 

  60. H.J. Goldsmid, Introduction to Thermoelectricity (New York: Springer, 2009), pp. 23–34.

    Google Scholar 

  61. J. Feng, B. Xiao, R. Zhou, and W. Pan, Acta Mater. 61, 7364 (2013).

    Article  Google Scholar 

  62. J.S. Dugdale and D.K.C. MacDonald, Phys. Rev. 98, 1751 (1955).

    Article  Google Scholar 

  63. G.A. Slack and J. Phys, Chem. Solids 34, 321 (1973).

    Article  Google Scholar 

  64. M.D. Segall, P.J. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002).

    Google Scholar 

  65. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, and M.C. Payne, Z. Kristallogr. 220, 567 (2005).

    Google Scholar 

  66. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  67. A. Nagaoka, K. Yoshino, K. Aoyagi, T. Minemoto, Y. Nose, T. Taniyama, K. Kakimoto, and H. Miyake, J. Cryst. Growth 393, 167 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51572149), National Basic Research Program of China (Grant No. 2013CB632504), National High Technology Research and Development Program of China (Grant No. 2012AA051104), and Tsinghua Initiative Scientific Research Program (Grant No. 20111080957).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangliang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhou, C. & Li, L. A First-Principles Theoretical Study on the Thermoelectric Properties of the Compound Cu5AlSn2S8 . J. Electron. Mater. 45, 1453–1458 (2016). https://doi.org/10.1007/s11664-015-4069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4069-x

Keywords

Navigation